license: apache-2.0
language:
- en
- zh
base_model:
- Qwen/Qwen2.5-14B
- Qwen/Qwen2.5-14B-Instruct
- Qwen/Qwen2.5-14B-Instruct-1M
- Qwen/Qwen2.5-Coder-14B
- Qwen/Qwen2.5-Coder-14B-Instruct
- Azure99/Blossom-V6-14B
- arcee-ai/SuperNova-Medius
- arcee-ai/Virtuoso-Small-v2
- deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
- huihui-ai/DeepSeek-R1-Distill-Qwen-14B-abliterated-v2
pipeline_tag: text-generation
tags:
- merge
model-index:
- name: ZYH-LLM-Qwen2.5-14B-V4
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 83.65
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/ZYH-LLM-Qwen2.5-14B-V4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 50.27
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/ZYH-LLM-Qwen2.5-14B-V4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 53.93
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/ZYH-LLM-Qwen2.5-14B-V4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.61
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/ZYH-LLM-Qwen2.5-14B-V4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 15.66
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/ZYH-LLM-Qwen2.5-14B-V4
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 46.71
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=YOYO-AI/ZYH-LLM-Qwen2.5-14B-V4
name: Open LLM Leaderboard
ZYH-LLM-Qwen2.5-14B-V4
The fourth-generation model of ZYH-LLM-Qwen2.5 has been released!
Increase the proportion of the R1 distillation model in the model merging recipe while maintaining the model's instruction-following ability and general capabilities.
Merge Template
merge_method: model_stock
base_model: Instruction Model
models:
- model: Instruction Fine-tuning Model 1
- model: Instruction Fine-tuning Model 2
- model: Inference Fine-tuning Model 1
- model: Inference Fine-tuning Model 2
dtype: bfloat16
tokenizer_source: base
int8_mask: true
normalize: true
Using the above template for merging can improve the calculation accuracy and inference ability of the model without reducing the general capabilities of the instruction model.
ZYH-LLM-Qwen2.5-V4 used this template during the model merging process.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 43.14 |
IFEval (0-Shot) | 83.65 |
BBH (3-Shot) | 50.27 |
MATH Lvl 5 (4-Shot) | 53.93 |
GPQA (0-shot) | 8.61 |
MuSR (0-shot) | 15.66 |
MMLU-PRO (5-shot) | 46.71 |
First stage:
Create four different instruction models and code model
models:
- model: Qwen/Qwen2.5-14B-Instruct
parameters:
density: 1
weight: 1
lambda: 0.9
- model: Qwen/Qwen2.5-14B-Instruct-1M
parameters:
density: 1
weight: 1
lambda: 0.9
merge_method: della
base_model: Qwen/Qwen2.5-14B
parameters:
density: 1
weight: 1
lambda: 0.9
normalize: true
int8_mask: true
dtype: bfloat16
tokenizer_source: base
name: Qwen2.5-14B-della-base
models:
- model: Qwen/Qwen2.5-14B-Instruct
parameters:
density: 1
weight: 1
lambda: 0.9
- model: Qwen/Qwen2.5-14B-Instruct-1M
parameters:
density: 1
weight: 1
lambda: 0.9
merge_method: della
base_model: arcee-ai/Virtuoso-Small-v2
parameters:
density: 1
weight: 1
lambda: 0.9
normalize: true
int8_mask: true
dtype: bfloat16
tokenizer_source: base
name: Qwen2.5-14B-della-v2
models:
- model: Qwen/Qwen2.5-14B-Instruct
parameters:
density: 1
weight: 1
lambda: 0.9
- model: Qwen/Qwen2.5-14B-Instruct-1M
parameters:
density: 1
weight: 1
lambda: 0.9
merge_method: della
base_model: arcee-ai/SuperNova-Medius
parameters:
density: 1
weight: 1
lambda: 0.9
normalize: true
int8_mask: true
dtype: bfloat16
tokenizer_source: base
name: Qwen2.5-14B-della-Nova
models:
- model: Qwen/Qwen2.5-14B-Instruct
parameters:
density: 1
weight: 1
lambda: 0.9
- model: Qwen/Qwen2.5-14B-Instruct-1M
parameters:
density: 1
weight: 1
lambda: 0.9
merge_method: della
base_model: Azure99/Blossom-V6-14B
parameters:
density: 1
weight: 1
lambda: 0.9
normalize: true
int8_mask: true
dtype: bfloat16
tokenizer_source: base
name: Qwen2.5-14B-della-V6
models:
- model: Qwen/Qwen2.5-Coder-14B-Instruct
parameters:
density: 1
weight: 1
lambda: 0.9
merge_method: della
base_model: Qwen/Qwen2.5-Coder-14B
parameters:
density: 1
weight: 1
lambda: 0.9
normalize: true
int8_mask: true
dtype: bfloat16
tokenizer_source: base
name: Qwen2.5-Coder-14B-della
Second stage:
Step 1:
Create three instruction models with a bias towards reasoning by using templates.
merge_method: model_stock
base_model: Qwen2.5-14B-della-base
models:
- model: Qwen2.5-Coder-14B-della
- model: Qwen2.5-14B-della-v2
- model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
- model: huihui-ai/DeepSeek-R1-Distill-Qwen-14B-abliterated-v2
dtype: bfloat16
tokenizer_source: base
int8_mask: true
normalize: true
name: Qwen2.5-14B-mst-Coder
merge_method: model_stock
base_model: Qwen2.5-14B-della-base
models:
- model: Qwen2.5-14B-della-V6
- model: Qwen2.5-14B-della-v2
- model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
- model: huihui-ai/DeepSeek-R1-Distill-Qwen-14B-abliterated-v2
dtype: bfloat16
tokenizer_source: base
int8_mask: true
normalize: true
name: Qwen2.5-14B-mst-V6
merge_method: model_stock
base_model: Qwen2.5-14B-della-base
models:
- model: Qwen2.5-14B-della-Nova
- model: Qwen2.5-14B-della-v2
- model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
- model: huihui-ai/DeepSeek-R1-Distill-Qwen-14B-abliterated-v2
dtype: bfloat16
tokenizer_source: base
int8_mask: true
normalize: true
name: Qwen2.5-14B-mst-Nova
Step 2:
Create a pure instruction model to restore the generality of the final model.
merge_method: model_stock
base_model: Qwen2.5-14B-della-base
models:
- model: Qwen2.5-14B-della-Nova
- model: Qwen2.5-14B-della-v2
- model: Qwen2.5-14B-della-V6
dtype: bfloat16
tokenizer_source: base
int8_mask: true
normalize: true
name: Qwen2.5-14B-mst-it
Third stage:
Create a base model with a context of 1 million tokens.
merge_method: sce
models:
# Pivot model
- model: Qwen/Qwen2.5-14B-Instruct-1M
# Target models
- model: Qwen/Qwen2.5-14B
base_model: Qwen/Qwen2.5-14B-Instruct-1M
parameters:
select_topk: 1
dtype: bfloat16
tokenizer_source: base
normalize: true
int8_mask: true
name: Qwen2.5-14B-1M
models:
- model: Qwen/Qwen2.5-14B-Instruct
parameters:
density: 1
weight: 1
lambda: 0.9
- model: Qwen/Qwen2.5-14B-Instruct-1M
parameters:
density: 1
weight: 1
lambda: 0.9
merge_method: della
base_model: Qwen2.5-14B-1M
parameters:
density: 1
weight: 1
lambda: 0.9
normalize: true
int8_mask: true
dtype: bfloat16
tokenizer_source: base
name: Qwen2.5-14B-della-1M
Final stage:
merge_method: model_stock
base_model: Qwen2.5-14B-della-1M
models:
- model: Qwen2.5-14B-mst-Coder
- model: Qwen2.5-14B-mst-V6
- model: Qwen2.5-14B-mst-Nova
- model: Qwen2.5-14B-mst-it
dtype: bfloat16
tokenizer_source: base
int8_mask: true
normalize: true
name: ZYH-LLM-Qwen2.5-14B-V4