wikidyk-scope-clf-deberta-v3-large-1_cluster
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5455
- Accuracy: 0.8204
- F1: 0.8462
- Precision: 0.8141
- Recall: 0.8808
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.0921 | 1.0 | 902 | 0.6758 | 0.7565 | 0.7654 | 0.8326 | 0.7082 |
0.0634 | 2.0 | 1804 | 0.7185 | 0.8174 | 0.8362 | 0.8414 | 0.8310 |
0.0212 | 3.0 | 2706 | 0.9475 | 0.7725 | 0.8024 | 0.7821 | 0.8238 |
0.0079 | 4.0 | 3608 | 1.2432 | 0.7445 | 0.7991 | 0.7149 | 0.9057 |
0.0021 | 5.0 | 4510 | 1.4449 | 0.8024 | 0.8339 | 0.7889 | 0.8843 |
0.0003 | 6.0 | 5412 | 1.3861 | 0.7934 | 0.8262 | 0.7822 | 0.8754 |
0.0001 | 7.0 | 6314 | 1.5118 | 0.7934 | 0.8265 | 0.7813 | 0.8772 |
0.0058 | 8.0 | 7216 | 1.8437 | 0.7475 | 0.8019 | 0.7161 | 0.9110 |
0.0002 | 9.0 | 8118 | 1.6242 | 0.7874 | 0.8253 | 0.7656 | 0.8950 |
0.0037 | 10.0 | 9020 | 1.5455 | 0.8204 | 0.8462 | 0.8141 | 0.8808 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 3
Model tree for YWZBrandon/wikidyk-scope-clf-deberta-v3-large-1_cluster
Base model
microsoft/deberta-v3-large