The following example illustrates how to load the FineEdit-XL adapter for inference. For FineEdit-Pro, we use Qwen2.5-3B-Instruct as the base model.
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch
## Base Model
base_model = "meta-llama/Llama-3.2-3B"
## Lora
adapter_model = "YimingZeng/FineEdit_Model"
subfolder = "FineEdit-XL"
## Load tokenizer and base model
tokenizer = AutoTokenizer.from_pretrained(base_model)
base = AutoModelForCausalLM.from_pretrained(
base_model,
torch_dtype=torch.bfloat16,
device_map="auto"
)
## Load LoRA adapter
model = PeftModel.from_pretrained(base, adapter_model, subfolder=subfolder)
## Test
prompt = """Edit Request: Please change 'Captain American' to 'Iron Man'.
Original Content: 'Captain American' is a superhero.
Edited Content:
"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support