NexusGS: Sparse View Synthesis with Epipolar Depth Priors in 3D Gaussian Splatting

Yulong Zheng1  Zicheng Jiang1  Shengfeng He2  Yandu Sun1  Junyu Dong1  Huaidong Zhang3  Yong Du1, *
1Ocean University of Chinay  2Singapore Management University  3South China University of Technology
*corresponding author

Paper | Project Page | Video


pipeline

Environmental Setups

Tested on Ubuntu 18.04, CUDA 11.8, PyTorch 2.0.0

conda env create -n nexus python=3.10
conda activate nexus

Install Pytorch

pip install torch==2.0.0 torchvision==0.15.1 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu118

Install submodules

pip install submodules/diff-gaussian-rasterization-confidence
pip install submodules/simple-knn

Running

Taking LLFF as an example, the dataset folder structure is as follows:

β”œβ”€β”€ datasets
    β”œβ”€β”€ LLFF
        β”œβ”€β”€ scene
            β”œβ”€β”€ sparse
            β”œβ”€β”€ images 
            β”œβ”€β”€ images_8
            β”œβ”€β”€ 3_views
                β”œβ”€β”€ flow  

LLFF

Download LLFF dataset: Link.

Download the LLFF optical flow processed by FlowFormer++ from the Link.

Run using the following script:

sh scripts/run_llff.sh 0

DTU

TODO

MipNeRF-360

TODO

Citation

If you find our work useful for your project, please consider citing the following paper.

@article{zheng2025nexusgs,
  title={NexusGS: Sparse View Synthesis with Epipolar Depth Priors in 3D Gaussian Splatting},
  author={Zheng, Yulong and Jiang, Zicheng and He, Shengfeng and Sun, Yandu and Dong, Junyu and Zhang, Huaidong and Du, Yong},
  journal={arXiv preprint arXiv:2503.18794},
  year={2025}
}

Acknowledgement

Special thanks to the following awesome projects!

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support