This repository contains the model presented in GUI-G1: Understanding r1-zero-like training for visual grounding in gui agents.

Project page: https://github.com/Yuqi-Zhou/GUI-G1

Training Details:

  • Training Dataset: We used the UI-R1-3B-Train to train our Qwen2.5-VL-3B-Instruct, which contains 101 samples with grounding annotations.
  • Other: During training, the vision encoder was frozen. We used a learning rate of 1e-6, a sampling temperature of 0.9, and generated 8 outputs per prompt. Training was conducted on 4 L20 (48G) GPUs with 4 samples per GPU, beta set to 0, and a gradient accumulation step of 1.

Benchmark 1: ScreenSpotV2

ScreenSpotV2 inference mode Mobile-T Mobile-I Desktop-T Desktop-I Web-T Web-I Avg
OS-ATLAS-7B w/o thinking 95.2 75.8 90.7 63.6 90.6 77.3 84.1
UI-TARS-7B w/o thinking 95.2 79.1 90.7 68.6 90.6 78.3 84.7
UI-R1-3B (v1) w/ thinking 96.2 84.3 92.3 63.6 89.2 75.4 85.4
GUI-R1-3B w/ thinking 97.6 78.2 94.3 64.3 91.0 72.4 85.0
UI-R1-3B (v2) w/ thinking 97.6 79.6 92.3 67.9 88.9 77.8 85.8
UI-R1-E-3B w/o thinking 98.2 83.9 94.8 75.0 93.2 83.7 89.5
GUI-G1-3B-0.1K w/o thinking 98.3 93.36 92.8 80.0 88.5 79.3 89.8

Benchmark 2: ScreenSpot-Pro

ScreenSpot-Pro inference mode Average Accuracy↑
UGround-7B w/o thinking 16.5
OS-ATLAS-7B w/o thinking 18.9
UI-R1-3B (v1) w/ thinking 17.8
GUI-R1-3B w/ thinking 26.6
UI-R1-3B (v2) w/ thinking 29.8
UI-R1-E-3B w/o thinking 33.5
GUI-G1-3B-0.1K w/o thinking 43.9

Evaluation Code for GUI Grounding

Here we show a code snippet to show you how to use the chat model with transformers and qwen_vl_utils:

from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
# default: Load the model on the available device(s)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    "Yuqi-Zhou/GUI-G1-3B-0.1K", torch_dtype="auto", device_map="auto"
)
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
#     "Yuqi-Zhou/GUI-G1-3B-0.1K",
#     torch_dtype=torch.bfloat16,
#     attn_implementation="flash_attention_2",
#     device_map="auto",
# )

# default processer
processor = AutoProcessor.from_pretrained("Yuqi-Zhou/GUI-G1-3B-0.1K")

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
            },
            {"type": "text", "text": "Grounding instruction is:{Question}. Help to locate and output its bbox coordinates using JSON format."},
        ],
    }
]
# Preparation for inference
text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128, use_cache=True)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)

Citation

If you find our work helpful, feel free to give us a cite.

@article{zhou2025gui,
  title={GUI-G1: Understanding r1-zero-like training for visual grounding in gui agents},
  author={Zhou, Yuqi and Dai, Sunhao and Wang, Shuai and Zhou, Kaiwen and Jia, Qinglin and Xu, Jun},
  journal={arXiv preprint arXiv:2505.15810},
  year={2025}
}
Downloads last month
8
Safetensors
Model size
3.75B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Yuqi-Zhou/GUI-G1-3B-0.1K

Finetuned
(364)
this model
Quantizations
2 models

Dataset used to train Yuqi-Zhou/GUI-G1-3B-0.1K