AI & ML interests

On-device AI application

Recent Activity

yeonseok-zeticaiย  updated a Space 27 days ago
ZETIC-ai/README
yeonseok-zeticaiย  published a Space 27 days ago
ZETIC-ai/README
View all activity

๐Ÿ›ฐ๏ธ ZETIC.ai โ€” On-Device AI for Every Device

Build. Deploy. Run. Anywhere.
ZETIC.ai helps AI engineers deploy models on any mobile device โ€” without cloud GPU servers.
We transform your existing AI models into NPU-optimized, on-device runtimes in under 6 hours including from global device benchmark to runtime source code generation.


๐Ÿš€ What We Do

ZETIC.MLange โ€” our core platform โ€” enables serverless AI by:

  • Automated Conversion: Convert your PyTorch, ONNX, or TFLite model into a device-specific NPU library.
  • Peak Performance: Up to 60ร— faster than GPU cloud inference, with zero accuracy loss.
  • Broad Compatibility: Supports Android, iOS, Linux; MediaTek, Qualcomm, Apple NPUs โ€” more coming soon.
  • End-to-End SDK: From model optimization to app integration โ€” no extra engineering required.

๐Ÿ›  Key Features

  • Zero GPU Costs โ€” Replace expensive GPU cloud servers with free NPU power in devices.
  • Full Privacy & Security โ€” Data never leaves the device.
  • Ultra-Low Latency โ€” Real-time AI experiences, even offline.
  • Cross-Platform โ€” One model โ†’ All devices โ†’ Same performance.

๐Ÿ“ฆ Example Use Cases

  • ๐ŸŽ™ Speech Recognition (Whisper) โ€” Real-time, offline transcription on mobile.
  • ๐Ÿฆท Dental AI Diagnostics โ€” Instant tooth condition analysis via smartphone camera.
  • ๐ŸŒ๏ธ Sports AI โ€” On-device golf swing analytics.
  • ๐Ÿค– On-Device LLMs โ€” Chat & reasoning models running entirely offline.

๐Ÿ“Š Benchmarks

Device Task Cloud GPU On-Device NPU Speedup
iPhone 16 Pro Whisper-Small 1.2s 0.07s ร—17
Galaxy S24 Ultra LLaMA-3-8B 2.4s/token 0.09s/token ร—26

๐Ÿ”— See more benchmarks ยป

YOLOv8n โ€” NPU Latency (ms)

Device Manufacturer CPU GPU CPU/GPU NPU
Apple iPhone 16 Apple 126.27 - 8.98 2.03
Apple iPhone 16 Pro Apple 122.23 - 7.54 1.69
Samsung Galaxy S24+ Qualcomm 69.79 24.38 618.05 3.85
Samsung Galaxy Tab S9 Qualcomm 107.78 30.39 344.42 5.21
Samsung Galaxy S22 Ultra 5G Qualcomm 103.40 39.73 100.34 7.41

Whisper-tiny-encoder โ€” NPU Latency (ms)

Device Manufacturer CPU GPU CPU/GPU NPU
Apple iPhone 16 Apple 552.13 - 44.49 19.01
Apple iPhone 15 Pro Apple 527.78 - 43.13 19.40
} Samsung Galaxy S23 Qualcomm 290.62ms 169.82ms 2,795.18ms 86.88
Samsung Galaxy S24+ Qualcomm 278.78 133.48 2619.56 106.44
Samsung Galaxy S23 Ultra Qualcomm 308.82 170.08 2688.97 68.34
  • You can get runtime source code and benchmark report of your model with ZETIC.MLange

๐Ÿ‘จ๐Ÿปโ€๐Ÿ’ป Plug-and-play To Your App

  • The runtime SDK is also provided for your AI model with ZETIC.MLange

  • iOS Integration (Swift)


// import
import ZeticMLange

// ...

// (1) Load Zetic MLange model
let model = try ZeticMLangeModel("MLANGE_PROJECT_API_KEY")

// (2) Run model after preparing model inputs
let inputs: [Data] = [] // Prepare your inputs

try model.run(inputs)

// (3) Get output data array
let outputs = model.getOutputDataArray()
  • Android Integration (Kotlin, Java)
// import
import com.zeticai.mlange.core.model.Target
import com.zeticai.mlange.core.model.ZeticMLangeModel

// ...

// (1) Load Zetic MLange model
val model = ZeticMLangeModel(this, "MLANGE_PROJECT_API_KEY")

// (2) Run model after preparing model inputs
val inputs: Array<ByteBuffer> = // Prepare your inputs

model.run(inputs)

// (3) Get output buffers of the model
val outputs = model.outputBuffers

๐Ÿ“ฅ Try It Now


๐Ÿงญ Supported Targets

  • OS: Android, iOS, Linux
  • NPUs: MediaTek, Qualcomm, Apple (more coming)
  • Frameworks In: PyTorch, ONNX, TFLite
  • Artifacts Out: NPU-optimized runtime libraries + SDK bindings (Kotlin, Java, Swift, Flutter, React Native)

๐Ÿ“ฌ Contact Us


ZETIC.ai โ€” AI for All, Anytime, Anywhere.
Run your AI where it matters: on the device.

models 0

None public yet

datasets 0

None public yet