metadata
license: apache-2.0
base_model: google/vit-base-patch32-384
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: n_rmsProp_VitB-p32-384-2e-4-batch_16_epoch_4_classes_24
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9597701149425287
n_rmsProp_VitB-p32-384-2e-4-batch_16_epoch_4_classes_24
This model is a fine-tuned version of google/vit-base-patch32-384 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1776
- Accuracy: 0.9598
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.8953 | 0.07 | 100 | 3.3433 | 0.1164 |
1.8876 | 0.14 | 200 | 2.0956 | 0.3333 |
0.7962 | 0.21 | 300 | 0.9204 | 0.7040 |
0.5319 | 0.28 | 400 | 0.5776 | 0.8118 |
0.3414 | 0.35 | 500 | 0.3952 | 0.8764 |
0.1779 | 0.42 | 600 | 0.2754 | 0.9109 |
0.2608 | 0.49 | 700 | 0.4758 | 0.8649 |
0.2218 | 0.56 | 800 | 0.2755 | 0.9152 |
0.1441 | 0.63 | 900 | 0.2786 | 0.9138 |
0.1809 | 0.7 | 1000 | 0.3369 | 0.8894 |
0.1212 | 0.77 | 1100 | 0.2293 | 0.9224 |
0.1966 | 0.84 | 1200 | 0.1879 | 0.9468 |
0.1587 | 0.91 | 1300 | 0.2081 | 0.9468 |
0.123 | 0.97 | 1400 | 0.2061 | 0.9368 |
0.1052 | 1.04 | 1500 | 0.2915 | 0.9181 |
0.0701 | 1.11 | 1600 | 0.3753 | 0.9109 |
0.0601 | 1.18 | 1700 | 0.2034 | 0.9382 |
0.0911 | 1.25 | 1800 | 0.1898 | 0.9382 |
0.022 | 1.32 | 1900 | 0.2885 | 0.9224 |
0.0805 | 1.39 | 2000 | 0.2636 | 0.9310 |
0.0024 | 1.46 | 2100 | 0.2271 | 0.9368 |
0.0056 | 1.53 | 2200 | 0.1677 | 0.9555 |
0.0789 | 1.6 | 2300 | 0.2369 | 0.9325 |
0.0935 | 1.67 | 2400 | 0.2417 | 0.9353 |
0.0499 | 1.74 | 2500 | 0.1791 | 0.9540 |
0.0375 | 1.81 | 2600 | 0.2283 | 0.9411 |
0.0166 | 1.88 | 2700 | 0.2564 | 0.9468 |
0.0166 | 1.95 | 2800 | 0.2737 | 0.9267 |
0.0033 | 2.02 | 2900 | 0.2508 | 0.9425 |
0.0144 | 2.09 | 3000 | 0.1975 | 0.9483 |
0.1054 | 2.16 | 3100 | 0.2073 | 0.9425 |
0.0004 | 2.23 | 3200 | 0.1479 | 0.9598 |
0.0288 | 2.3 | 3300 | 0.2287 | 0.9526 |
0.0066 | 2.37 | 3400 | 0.2602 | 0.9411 |
0.001 | 2.44 | 3500 | 0.2220 | 0.9468 |
0.0233 | 2.51 | 3600 | 0.2505 | 0.9382 |
0.0205 | 2.58 | 3700 | 0.1830 | 0.9583 |
0.0083 | 2.65 | 3800 | 0.2539 | 0.9368 |
0.0003 | 2.72 | 3900 | 0.2439 | 0.9440 |
0.0003 | 2.79 | 4000 | 0.2040 | 0.9555 |
0.019 | 2.86 | 4100 | 0.2246 | 0.9598 |
0.0069 | 2.92 | 4200 | 0.2520 | 0.9526 |
0.0003 | 2.99 | 4300 | 0.1937 | 0.9555 |
0.0001 | 3.06 | 4400 | 0.2040 | 0.9511 |
0.0004 | 3.13 | 4500 | 0.1777 | 0.9598 |
0.0005 | 3.2 | 4600 | 0.1956 | 0.9626 |
0.0001 | 3.27 | 4700 | 0.2120 | 0.9569 |
0.0001 | 3.34 | 4800 | 0.1936 | 0.9612 |
0.0001 | 3.41 | 4900 | 0.2002 | 0.9583 |
0.0002 | 3.48 | 5000 | 0.1795 | 0.9598 |
0.0001 | 3.55 | 5100 | 0.1548 | 0.9655 |
0.0006 | 3.62 | 5200 | 0.1931 | 0.9555 |
0.0001 | 3.69 | 5300 | 0.1846 | 0.9598 |
0.0 | 3.76 | 5400 | 0.2092 | 0.9526 |
0.0 | 3.83 | 5500 | 0.1927 | 0.9555 |
0.0 | 3.9 | 5600 | 0.1796 | 0.9555 |
0.0 | 3.97 | 5700 | 0.1776 | 0.9598 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2