metadata
language:
- en
license: apache-2.0
library_name: transformers
tags:
- merge
- mergekit
- lazymergekit
- ZeroXClem/Llama-3.1-8B-SuperNova-EtherealHermes
- invisietch/EtherealRainbow-v0.3-8B
base_model:
- ZeroXClem/Llama-3.1-8B-SuperNova-EtherealHermes
- invisietch/EtherealRainbow-v0.3-8B
pipeline_tag: text-generation
model-index:
- name: Llama-3.1-8B-RainbowLight-EtherealMix
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 49.73
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Llama-3.1-8B-RainbowLight-EtherealMix
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 31.07
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Llama-3.1-8B-RainbowLight-EtherealMix
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 12.16
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Llama-3.1-8B-RainbowLight-EtherealMix
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 4.92
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Llama-3.1-8B-RainbowLight-EtherealMix
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.87
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Llama-3.1-8B-RainbowLight-EtherealMix
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 29.23
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Llama-3.1-8B-RainbowLight-EtherealMix
name: Open LLM Leaderboard
ZeroXClem/Llama-3.1-8B-RainbowLight-EtherealMix
Overview
ZeroXClem/Llama-3.1-8B-RainbowLight-EtherealMix is a powerful fusion of ZeroXClem/Llama-3.1-8B-SuperNova-EtherealHermes and invisietch/EtherealRainbow-v0.3-8B, utilizing SLERP (Spherical Linear Interpolation) for optimal blending of embeddings. This merge enhances reasoning, contextual understanding, and creative language generation while retaining ethical alignment and responsiveness.
π₯ Merged Models
- ZeroXClem/Llama-3.1-8B-SuperNova-EtherealHermes - A highly optimized instruction-tuned model, built for nuanced, long-form reasoning.
- invisietch/EtherealRainbow-v0.3-8B - A dynamic conversational model with expanded alignment and expressiveness.
βοΈ Merge Configuration
The following YAML configuration defines how these models were fused using SLERP:
# Merge configuration for ZeroXClem-Llama-3.1-8B-RainbowLight-EtherealMix using SLERP
name: ZeroXClem-Llama-3.1-8B-RainbowLight-EtherealMix
slices:
- sources:
- model: ZeroXClem/Llama-3.1-8B-SuperNova-EtherealHermes
layer_range: [0, 32]
- model: invisietch/EtherealRainbow-v0.3-8B
layer_range: [0, 32]
merge_method: slerp
base_model: invisietch/EtherealRainbow-v0.3-8B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
Why SLERP?
- Maintains Model Integrity: Ensures a smooth transition between feature spaces of both models.
- Preserves Semantic Meaning: Avoids interpolation collapse, keeping token embeddings rich in structure.
- Balanced Performance: Retains the best qualities from both parent models.
π Capabilities
π Enhanced Features
- Supercharged Instruction Following β More intuitive and context-aware.
- Advanced Conversational Flow β Generates human-like responses with coherence.
- Creative and Expressive Writing β Ideal for storytelling, summarization, and content generation.
- Expanded Knowledge Base β Merging brings broader factual recall and conceptual understanding.
- Flexible Alignment β A balance of compliance and open-ended response generation.
π₯ Usage Instructions
Transformers
You can use the model via Hugging Face's transformers
library:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "ZeroXClem/Llama-3.1-8B-RainbowLight-EtherealMix"
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto"
)
# Sample inference
prompt = "What are the implications of artificial intelligence in the future of education?"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
output = model.generate(**inputs, max_new_tokens=200, do_sample=True, temperature=0.7, top_p=0.9)
print(tokenizer.decode(output[0], skip_special_tokens=True))
Ollama
For local execution with Ollama:
ollama run hf.co/ZeroXClem/Llama-3.1-8B-RainbowLight-EtherealMix
π Important Notes
- License: Governed by Meta's Llama 3.1 Community License.
- Alignment Considerations: Users are responsible for ethical and compliant use.
- System Tokens: Follows Llama 3.1 tokenization standards for inference stability.
- Quantization: Use FP16 for optimal performance, though Q8 quantized versions may be available.
π Special Thanks
Deep gratitude to:
- @invisietch for EtherealRainbow-v0.3-8B.
- Hugging Face & Open-Source AI Community for their incredible contributions. ππ
π Resources
β¨ Merged with precision. Optimized for excellence. Experience RainbowLight EtherealMix today! β¨
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 22.83 |
IFEval (0-Shot) | 49.73 |
BBH (3-Shot) | 31.07 |
MATH Lvl 5 (4-Shot) | 12.16 |
GPQA (0-shot) | 4.92 |
MuSR (0-shot) | 9.87 |
MMLU-PRO (5-shot) | 29.23 |