ZeroXClem's picture
Adding Evaluation Results (#1)
2986048 verified
metadata
language:
  - en
license: apache-2.0
library_name: transformers
tags:
  - merge
  - mergekit
  - lazymergekit
base_model:
  - bunnycore/Llama-3.1-8B-TitanFusion-Test
  - vicgalle/Roleplay-Hermes-3-Llama-3.1-8B
  - vicgalle/Humanish-Roleplay-Llama-3.1-8B
  - bunnycore/Llama-3.1-8B-TitanFusion-Mix
  - kromeurus/L3.1-Siithamo-v0.4-8B
pipeline_tag: text-generation
model-index:
  - name: Llama-3.1-8B-SpecialTitanFusion
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 74.02
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Llama-3.1-8B-SpecialTitanFusion
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 34.82
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Llama-3.1-8B-SpecialTitanFusion
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 23.34
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Llama-3.1-8B-SpecialTitanFusion
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 6.6
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Llama-3.1-8B-SpecialTitanFusion
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 7.49
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Llama-3.1-8B-SpecialTitanFusion
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 29.12
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Llama-3.1-8B-SpecialTitanFusion
          name: Open LLM Leaderboard

πŸ† ZeroXClem-Llama-3.1-8B-SpecialTitanFusion πŸ†

A powerful fusion of Titan-level models, designed for enhanced roleplay, creativity, and intelligence.

Model Fusion

πŸ“Œ Overview

ZeroXClem-Llama-3.1-8B-SpecialTitanFusion is a meticulously crafted model merge leveraging state-of-the-art transformer architectures. Using mergekit, we combined multiple high-performance Llama-3.1 models to enhance context retention, creativity, and nuanced text generation.

This model is based on kromeurus/L3.1-Siithamo-v0.4-8B, with carefully selected models merged using the model_stock method.

πŸ›  Merge Details

πŸ”„ Merge Method: model_stock

This model was merged using the model_stock method, ensuring a balanced and optimized blend of all contributing architectures.

πŸ“‘ Models Merged

The following models contributed to this fusion:

βš™ Configuration

name: ZeroXClem-Llama-3.1-8B-SpecialTitanFusion
base_model: kromeurus/L3.1-Siithamo-v0.4-8B
dtype: bfloat16
merge_method: model_stock
models:
  - model: bunnycore/Llama-3.1-8B-TitanFusion-Test
  - model: vicgalle/Roleplay-Hermes-3-Llama-3.1-8B
  - model: vicgalle/Humanish-Roleplay-Llama-3.1-8B
  - model: bunnycore/Llama-3.1-8B-TitanFusion-Mix
tokenizer_source: kromeurus/L3.1-Siithamo-v0.4-8B

🌟 Features & Capabilities

πŸ”Ή Highly dynamic writing – Perfect for storytelling, world-building, and creative applications.
πŸ”Ή Refined roleplay abilities – Enhanced persona handling, deep emotional responses, and immersive dialogue generation.
πŸ”Ή Better structured recall – Improved consistency across large-context conversations.
πŸ”Ή Balanced & non-restrictive responses – Adaptable across different use cases.

πŸ›  How to Use

πŸ”₯ Ollama (Quick Inference)

You can run the model using Ollama for direct testing:

ollama run hf.co/ZeroXClem-Llama-3.1-8B-SpecialTitanFusion

πŸ€— Hugging Face Transformers (Python)

from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch

model_name = "ZeroXClem-Llama-3.1-8B-SpecialTitanFusion"

# Load tokenizer & model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name, 
    torch_dtype=torch.bfloat16, 
    device_map="auto"
)

# Initialize text generation pipeline
text_generator = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)

# Example prompt
prompt = "Describe the significance of AI ethics in modern technology."

# Generate output
outputs = text_generator(
    prompt,
    max_new_tokens=200,
    do_sample=True,
    temperature=0.7,
    top_k=50,
    top_p=0.95
)

print(outputs[0]["generated_text"])

πŸ”§ Recommended Usage

πŸ“œ Prompting Style

For best results, use system prompts similar to Llama-3.1 Instruct.
Example system message:

Think step by step with a logical reasoning and intellectual sense before you provide any response.

For enhanced creativity in roleplay, try:

### Instruction:
You are an advanced roleplaying assistant. Maintain deep character consistency and immersive storytelling.

πŸ— Model Settings

For optimal output quality, use the following settings:

Temperature: 1.2  
Min P: 0.1  
Repeat Penalty: 1.05  
Repeat Penalty Tokens: 256   
Smooth Sampling: 0.18  

πŸ”₯ Disclaimer

πŸ”Ή Use responsibly!
This model follows Meta’s Llama-3.1 Community License Agreement. It is an uncensored model, meaning that alignment should be implemented based on individual use cases.

πŸ”Ή You are responsible for the content you generate.
Please ensure compliance with ethical AI guidelines when deploying this model in production environments.

πŸ’¬ Feedback & Contributions

If you have suggestions or improvements, feel free to open a discussion on Hugging Face! Let's continue improving the Llama-3.1 merging meta-game! πŸš€

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 29.23
IFEval (0-Shot) 74.02
BBH (3-Shot) 34.82
MATH Lvl 5 (4-Shot) 23.34
GPQA (0-shot) 6.60
MuSR (0-shot) 7.49
MMLU-PRO (5-shot) 29.12