ZeroXClem's picture
Adding Evaluation Results (#1)
65b946d verified
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- merge
- mergekit
- lazymergekit
- mergekit-community/mergekit-della_linear-cwuosuu
- mergekit-community/mergekit-della_linear-nimxtnw
- mergekit-community/mergekit-della_linear-vpjjtsa
- Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
base_model:
- mergekit-community/mergekit-della_linear-cwuosuu
- mergekit-community/mergekit-della_linear-nimxtnw
- mergekit-community/mergekit-della_linear-vpjjtsa
- Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
pipeline_tag: text-generation
model-index:
- name: Llama-3.1-8B-SuperTulu-LexiNova
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 41.65
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Llama-3.1-8B-SuperTulu-LexiNova
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 30.5
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Llama-3.1-8B-SuperTulu-LexiNova
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 25.3
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Llama-3.1-8B-SuperTulu-LexiNova
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 4.81
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Llama-3.1-8B-SuperTulu-LexiNova
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.23
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Llama-3.1-8B-SuperTulu-LexiNova
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 26.31
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ZeroXClem/Llama-3.1-8B-SuperTulu-LexiNova
name: Open LLM Leaderboard
---
# ZeroXClem/Llama-3.1-8B-SuperTulu-LexiNova
## Overview
ZeroXClem/Llama-3.1-8B-SuperTulu-LexiNova is model merge designed to a base for further fine tuning for better natural language understanding and text generation. By combining the best attributes of multiple high-performance models, this fusion allows a highly capable AI with reasoning, compliance, and versatility.
If you want to try the reccomended **fine-tuned** version of this model, please see [here](https://huggingface.co/ZeroXClem/Llama-3.1-8B-SuperNova-EtherealHermes).
This model is based on **Llama-3.1-8B-Instruct** and adheres to the **Meta Llama 3.1 Community License Agreement**.
## πŸš€ Key Features:
- **Enhanced Reasoning & Compliance**: Optimized for logical step-by-step thinking.
- **Balanced Safety & Utility**: Capable of nuanced and detailed responses while maintaining ethical constraints.
- **Diverse Knowledge Base**: A fusion of models specializing in general instruction, reasoning, and domain-specific tasks.
- **Superior Performance**: Achieves high benchmarks across multiple evaluations.
## 🧠 Merged Models
This model is a weighted merge of the following:
- **[Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2](https://huggingface.co/Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2)** – The foundational model, providing uncensored, high-compliance capabilities.
- **[mergekit-community/mergekit-della_linear-cwuosuu](https://huggingface.co/mergekit-community/mergekit-della_linear-cwuosuu)** – Strengthens logical reasoning and alignment.
- **[mergekit-community/mergekit-della_linear-nimxtnw](https://huggingface.co/mergekit-community/mergekit-della_linear-nimxtnw)** – Enhances multi-step inference and response depth.
- **[mergekit-community/mergekit-della_linear-vpjjtsa](https://huggingface.co/mergekit-community/mergekit-della_linear-vpjjtsa)** – Refines contextual understanding and coherence.
## πŸ”§ Merge Configuration
The following **YAML** configuration was used to merge these models using **Model Stock**, ensuring a balanced and optimized fusion:
```yaml
name: ZeroXClem/Llama-3.1-8B-SuperTulu-LexiNova
merge_method: model_stock
base_model: Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
dtype: float16
out_dtype: bfloat16
parameters:
normalize: false
int8_mask: true
models:
- model: mergekit-community/mergekit-della_linear-cwuosuu
parameters:
density: 0.5
weight: 0.5
- model: mergekit-community/mergekit-della_linear-nimxtnw
parameters:
density: 0.5
weight: 0.5
- model: mergekit-community/mergekit-della_linear-vpjjtsa
parameters:
density: 0.5
weight: 0.5
- model: Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
parameters:
density: 0.5
weight: 0.5
```
---
## πŸ›  How to Use
### πŸ”₯ Ollama
For quick inference, you can run the model using **Ollama**:
```sh
ollama run hf.co/ZeroXClem/Llama-3.1-8B-SuperTulu-LexiNova
```
### πŸ€— Hugging Face Transformers
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch
# Define model name
model_name = "ZeroXClem/Llama-3.1-8B-SuperTulu-LexiNova"
# Load tokenizer & model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Initialize text generation pipeline
text_generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Example prompt
prompt = "Explain the importance of AI alignment in modern society."
# Generate output
outputs = text_generator(
prompt,
max_new_tokens=150,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95
)
print(outputs[0]["generated_text"])
```
---
## πŸ“Œ Best Practices
- **Use System Prompts:**
For best results, use a system message before inference:
`"Think step by step with logical reasoning before providing any response."`
- **For More Uncensored Output:**
You can set a different system message or simply use `"."` as the system prompt.
- **Quantization Considerations:**
- `Q4` may sometimes cause refusals due to loss in fine-tuning.
- `F16` or `Q8` are recommended for optimal performance.
---
## πŸ“œ License
This model is released under the **Meta Llama 3.1 Community License Agreement**.
Usage, including commercial applications, must adhere to this license.
⚠ **Warning:** This model is uncensored and highly compliant. Ensure proper alignment layers before deploying as a public service.
---
## πŸ’‘ Future Improvements
- Further refinement of reasoning capabilities.
- Optimized token alignment for better coherence.
- Additional quantization tuning for efficient deployment.
---
## ❀️ Special Thanks
A heartfelt thank you to:
- **Orenguteng** for **Llama-3.1-8B-Lexi-Uncensored-V2**.
- **MergeKit Community** for the powerful **della_linear** model merges.
- The **πŸ€— Hugging Face & Open-Source AI** community for advancing AI research.
Your contributions make cutting-edge AI development possible! πŸš€πŸ’œ
---
## πŸ“’ Feedback & Contributions
If you encounter any issues or have ideas for improvements, feel free to open a discussion or submit a pull request.
---
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/ZeroXClem__Llama-3.1-8B-SuperTulu-LexiNova-details)
| Metric |Value|
|-------------------|----:|
|Avg. |23.30|
|IFEval (0-Shot) |41.65|
|BBH (3-Shot) |30.50|
|MATH Lvl 5 (4-Shot)|25.30|
|GPQA (0-shot) | 4.81|
|MuSR (0-shot) |11.23|
|MMLU-PRO (5-shot) |26.31|