SetFit with sentence-transformers/all-MiniLM-L6-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-MiniLM-L6-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 256 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | F1 |
---|---|
all | 0.8182 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the ๐ค Hub
model = SetFitModel.from_pretrained("Zlovoblachko/dim1_setfit")
# Run inference
preds = model("I loved the spiderman movie!")
Training Details
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (0.00023323617397037305, 0.00023323617397037305)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0011 | 1 | 0.2497 | - |
0.0541 | 50 | 0.2784 | - |
0.1081 | 100 | 0.2797 | - |
0.1622 | 150 | 0.2886 | - |
0.2162 | 200 | 0.2863 | - |
0.2703 | 250 | 0.2751 | - |
0.3243 | 300 | 0.2934 | - |
0.3784 | 350 | 0.2857 | - |
0.4324 | 400 | 0.293 | - |
0.4865 | 450 | 0.2791 | - |
0.5405 | 500 | 0.2985 | - |
0.5946 | 550 | 0.2998 | - |
0.6486 | 600 | 0.2822 | - |
0.7027 | 650 | 0.2849 | - |
0.7568 | 700 | 0.2877 | - |
0.8108 | 750 | 0.2818 | - |
0.8649 | 800 | 0.2854 | - |
0.9189 | 850 | 0.2986 | - |
0.9730 | 900 | 0.2956 | - |
1.0270 | 950 | 0.292 | - |
1.0811 | 1000 | 0.2881 | - |
1.1351 | 1050 | 0.2894 | - |
1.1892 | 1100 | 0.29 | - |
1.2432 | 1150 | 0.2783 | - |
1.2973 | 1200 | 0.2601 | - |
1.3514 | 1250 | 0.3014 | - |
1.4054 | 1300 | 0.2877 | - |
1.4595 | 1350 | 0.2998 | - |
1.5135 | 1400 | 0.2822 | - |
1.5676 | 1450 | 0.3072 | - |
1.6216 | 1500 | 0.2739 | - |
1.6757 | 1550 | 0.2797 | - |
1.7297 | 1600 | 0.2751 | - |
1.7838 | 1650 | 0.2912 | - |
1.8378 | 1700 | 0.292 | - |
1.8919 | 1750 | 0.3024 | - |
1.9459 | 1800 | 0.299 | - |
2.0 | 1850 | 0.2898 | - |
Framework Versions
- Python: 3.11.13
- SetFit: 1.1.2
- Sentence Transformers: 4.1.0
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Zlovoblachko/dim1_setfit
Base model
sentence-transformers/all-MiniLM-L6-v2