SetFit with sentence-transformers/all-MiniLM-L6-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Evaluation

Metrics

Label F1
all 0.8182

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the ๐Ÿค— Hub
model = SetFitModel.from_pretrained("Zlovoblachko/dim1_setfit")
# Run inference
preds = model("I loved the spiderman movie!")

Training Details

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (0.00023323617397037305, 0.00023323617397037305)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0011 1 0.2497 -
0.0541 50 0.2784 -
0.1081 100 0.2797 -
0.1622 150 0.2886 -
0.2162 200 0.2863 -
0.2703 250 0.2751 -
0.3243 300 0.2934 -
0.3784 350 0.2857 -
0.4324 400 0.293 -
0.4865 450 0.2791 -
0.5405 500 0.2985 -
0.5946 550 0.2998 -
0.6486 600 0.2822 -
0.7027 650 0.2849 -
0.7568 700 0.2877 -
0.8108 750 0.2818 -
0.8649 800 0.2854 -
0.9189 850 0.2986 -
0.9730 900 0.2956 -
1.0270 950 0.292 -
1.0811 1000 0.2881 -
1.1351 1050 0.2894 -
1.1892 1100 0.29 -
1.2432 1150 0.2783 -
1.2973 1200 0.2601 -
1.3514 1250 0.3014 -
1.4054 1300 0.2877 -
1.4595 1350 0.2998 -
1.5135 1400 0.2822 -
1.5676 1450 0.3072 -
1.6216 1500 0.2739 -
1.6757 1550 0.2797 -
1.7297 1600 0.2751 -
1.7838 1650 0.2912 -
1.8378 1700 0.292 -
1.8919 1750 0.3024 -
1.9459 1800 0.299 -
2.0 1850 0.2898 -

Framework Versions

  • Python: 3.11.13
  • SetFit: 1.1.2
  • Sentence Transformers: 4.1.0
  • Transformers: 4.49.0
  • PyTorch: 2.6.0+cu124
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
8
Safetensors
Model size
22.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Zlovoblachko/dim1_setfit

Finetuned
(439)
this model

Evaluation results