metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-large-lv60
tags:
- automatic-speech-recognition
- librispeech_asr
- generated_from_trainer
datasets:
- librispeech_asr
metrics:
- wer
model-index:
- name: wav2vec2-librispeech-clean-100h-demo-dist
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LIBRISPEECH_ASR - CLEAN
type: librispeech_asr
config: clean
split: None
args: 'Config: clean, Training split: train.100, Eval split: validation'
metrics:
- name: Wer
type: wer
value: 0.09198730662435542
wav2vec2-librispeech-clean-100h-demo-dist
This model is a fine-tuned version of facebook/wav2vec2-large-lv60 on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.0554
- Wer: 0.0920
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3.0
- mixed_precision_training: Native AMP
Training results
Framework versions
- Transformers 4.53.1
- Pytorch 2.7.0+cu126
- Datasets 2.21.0
- Tokenizers 0.21.2