File size: 4,121 Bytes
8538457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import pandas as pd
import torch
import numpy as np
from PIL import Image
from sklearn.metrics import classification_report, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
from torchvision import transforms
from transformers import (
    ViTFeatureExtractor,
    ViTForImageClassification,
    Trainer,
    TrainingArguments,
    EarlyStoppingCallback,
    default_data_collator
)
from datasets import load_dataset, Dataset, DatasetDict
from huggingface_hub import HfApi

# ============ CONFIG ============ #
MODEL_NAME = "wambugu71/crop_leaf_diseases_vit"
CSV_PATH = "dataset/labels.csv"
IMAGE_DIR = "dataset/images"
OUTPUT_DIR = "./vit_leaf_disease_model"
NUM_EPOCHS = 10
BATCH_SIZE = 16
LEARNING_RATE = 2e-5
SEED = 42

# Set random seed for reproducibility
torch.manual_seed(SEED)
np.random.seed(SEED)

# ============ LOAD DATA ============ #
df = pd.read_csv(CSV_PATH)
labels = sorted(df['label'].unique())
label2id = {label: i for i, label in enumerate(labels)}
id2label = {i: label for label, i in label2id.items()}
df['label_id'] = df['label'].map(label2id)

# ============ FEATURE EXTRACTOR & MODEL ============ #
feature_extractor = ViTFeatureExtractor.from_pretrained(MODEL_NAME)
model = ViTForImageClassification.from_pretrained(
    MODEL_NAME,
    num_labels=len(labels),
    label2id=label2id,
    id2label=id2label
)

# ============ IMAGE TRANSFORM ============ #
def preprocess(example):
    image_path = os.path.join(IMAGE_DIR, example['image'])
    image = Image.open(image_path).convert("RGB")
    inputs = feature_extractor(images=image, return_tensors="pt")
    example['pixel_values'] = inputs['pixel_values'][0]
    example['label'] = example['label_id']
    return example

# Convert to HF dataset
dataset = Dataset.from_pandas(df)
dataset = dataset.map(preprocess, remove_columns=['image', 'label', 'label_id'])
dataset = dataset.train_test_split(test_size=0.2, seed=SEED)
train_ds = dataset['train']
eval_ds = dataset['test']

# ============ METRICS ============ #
from evaluate import load
accuracy = load("accuracy")

def compute_metrics(eval_pred):
    logits, labels = eval_pred
    predictions = np.argmax(logits, axis=-1)
    return accuracy.compute(predictions=predictions, references=labels)

# ============ TRAINING ARGS ============ #
training_args = TrainingArguments(
    output_dir=OUTPUT_DIR,
    per_device_train_batch_size=BATCH_SIZE,
    per_device_eval_batch_size=BATCH_SIZE,
    num_train_epochs=NUM_EPOCHS,
    evaluation_strategy="epoch",
    save_strategy="epoch",
    learning_rate=LEARNING_RATE,
    logging_dir="./logs",
    logging_steps=10,
    save_total_limit=2,
    load_best_model_at_end=True,
    metric_for_best_model="accuracy",
    greater_is_better=True,
    seed=SEED,
    report_to="none"
)

# ============ TRAINER ============ #
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_ds,
    eval_dataset=eval_ds,
    tokenizer=feature_extractor,
    data_collator=default_data_collator,
    compute_metrics=compute_metrics,
    callbacks=[EarlyStoppingCallback(early_stopping_patience=3)]
)

# ============ TRAIN ============ #
trainer.train()

# ============ SAVE MODEL ============ #
model.save_pretrained(OUTPUT_DIR)
feature_extractor.save_pretrained(OUTPUT_DIR)

# ============ EVALUATE ============ #
outputs = trainer.predict(eval_ds)
preds = np.argmax(outputs.predictions, axis=-1)
true_labels = outputs.label_ids

print("\nClassification Report:\n")
print(classification_report(true_labels, preds, target_names=labels))

# ============ CONFUSION MATRIX ============ #
cm = confusion_matrix(true_labels, preds)
plt.figure(figsize=(10, 8))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=labels, yticklabels=labels)
plt.xlabel("Predicted")
plt.ylabel("True")
plt.title("Confusion Matrix")
plt.tight_layout()
plt.savefig("confusion_matrix.png")
plt.show()

# ============ OPTIONAL: UPLOAD TO HF HUB ============ #
# api = HfApi()
# api.upload_folder(
#     folder_path=OUTPUT_DIR,
#     repo_id="your-username/crop_leaf_disease_vit_finetuned",
#     repo_type="model"
# )