model
This model is a fine-tuned version of FacebookAI/xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.2858
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.2251 | 0.0533 | 1000 | 4.1491 |
2.7413 | 0.1067 | 2000 | 3.7912 |
2.5416 | 0.16 | 3000 | 3.6801 |
2.371 | 0.2133 | 4000 | 3.6439 |
2.2968 | 0.2667 | 5000 | 3.5301 |
2.1989 | 0.32 | 6000 | 3.3905 |
2.0841 | 0.3733 | 7000 | 3.5244 |
2.0032 | 0.4267 | 8000 | 3.3268 |
1.9618 | 0.48 | 9000 | 3.3207 |
1.9114 | 0.5333 | 10000 | 3.4544 |
1.8472 | 0.5867 | 11000 | 3.2520 |
1.8068 | 0.64 | 12000 | 3.3389 |
1.7692 | 0.6933 | 13000 | 3.2428 |
1.7236 | 0.7467 | 14000 | 3.3926 |
1.7219 | 0.8 | 15000 | 3.2721 |
1.6838 | 0.8533 | 16000 | 3.2671 |
1.6771 | 0.9067 | 17000 | 3.2732 |
1.6531 | 0.96 | 18000 | 3.2858 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.1.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 11