abdulrahman-nuzha's picture
End of training
1437a0a verified
metadata
library_name: transformers
license: mit
base_model: intfloat/e5-small
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: intfloat-e5-small-arabic-fp16
    results: []

intfloat-e5-small-arabic-fp16

This model is a fine-tuned version of intfloat/e5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7833
  • Accuracy: 0.6782
  • Precision: 0.6650
  • Recall: 0.6782
  • F1: 0.6560

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.3
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.0984 0.3636 50 1.0847 0.4373 0.5309 0.4373 0.2662
1.069 0.7273 100 1.0270 0.5677 0.6816 0.5677 0.4864
1.0003 1.0873 150 0.9488 0.6041 0.6923 0.6041 0.5281
0.9438 1.4509 200 0.9085 0.6095 0.7017 0.6095 0.5340
0.9178 1.8145 250 0.9204 0.5895 0.6283 0.5895 0.5182
0.8936 2.1745 300 0.8394 0.6441 0.5970 0.6441 0.5653
0.8824 2.5382 350 0.8447 0.6464 0.7275 0.6464 0.5674
0.8774 2.9018 400 0.8706 0.625 0.6165 0.625 0.5859
0.8655 3.2618 450 0.8125 0.6541 0.6337 0.6541 0.6378
0.8517 3.6255 500 0.8528 0.6477 0.6565 0.6477 0.6013
0.8451 3.9891 550 0.7914 0.6686 0.6502 0.6686 0.6340
0.8084 4.3491 600 0.7833 0.6782 0.6650 0.6782 0.6560
0.8028 4.7127 650 0.7635 0.6923 0.6832 0.6923 0.6803
0.7874 5.0727 700 0.7815 0.6709 0.6828 0.6709 0.6754
0.7861 5.4364 750 0.7629 0.6873 0.6811 0.6873 0.6820
0.7593 5.8 800 0.7794 0.6823 0.6744 0.6823 0.6684
0.753 6.16 850 0.7680 0.6845 0.6859 0.6845 0.6838
0.753 6.5236 900 0.8404 0.6395 0.6783 0.6395 0.6459

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1