|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
language: |
|
- ja |
|
base_model: |
|
- Qwen/Qwen2.5-32B-Instruct |
|
pipeline_tag: text-generation |
|
--- |
|
## ABEJA-Qwen2.5-32b-Japanese-v0.1 |
|
|
|
ABEJA-Qwen2.5-32b-Japanese-v0.1はQwen/Qwen2.5-32B-Instructをベースに日本語中心とした継続事前学習を実施したモデルです。 |
|
Post-Traningはまだ実施しておらず、ChatVector(Qwen/Qwen2.5-32B-InstructとQwen/Qwen2.5-32B の差分ベクトル)により指示追従性能をあげています。 |
|
|
|
詳細はABEJAのテックブログを参照してください。 |
|
|
|
|
|
|
|
## 使い方 |
|
|
|
```Python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "abeja/ABEJA-Qwen2.5-32b-Japanese-v0.1" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
prompt = "人とAIが協調するためには?" |
|
messages = [ |
|
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=512 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
print(response) |
|
``` |
|
|
|
## 開発者 |
|
|
|
- Hiroshi Kiyota |
|
- Keisuke Fujimoto |
|
- Kentaro Nakanishi |
|
- Kyo Hattori |
|
- Shinya Otani |
|
- Shogo Muranushi |
|
- Takuma Kume |
|
- Tomoki Manabe |
|
|
|
(*)アルファベット順 |