Edit model card
YAML Metadata Error: "language[0]" must only contain lowercase characters
YAML Metadata Error: "language[0]" with value "English" is not valid. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like "code", "multilingual". If you want to use BCP-47 identifiers, you can specify them in language_bcp47.

Refer to https://aclanthology.org/2021.semeval-1.87/

Citation

If you use this model in your work, please add the following citation -

@inproceedings{nandy-etal-2021-cs60075,
    title = "cs60075{\_}team2 at {S}em{E}val-2021 Task 1 : Lexical Complexity Prediction using Transformer-based Language Models pre-trained on various text corpora",
    author = "Nandy, Abhilash  and
      Adak, Sayantan  and
      Halder, Tanurima  and
      Pokala, Sai Mahesh",
    booktitle = "Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.semeval-1.87",
    doi = "10.18653/v1/2021.semeval-1.87",
    pages = "678--682",
    abstract = "The main contribution of this paper is to fine-tune transformer-based language models pre-trained on several text corpora, some being general (E.g., Wikipedia, BooksCorpus), some being the corpora from which the CompLex Dataset was extracted, and others being from other specific domains such as Finance, Law, etc. We perform ablation studies on selecting the transformer models and how their individual complexity scores are aggregated to get the resulting complexity scores. Our method achieves a best Pearson Correlation of 0.784 in sub-task 1 (single word) and 0.836 in sub-task 2 (multiple word expressions).",
}
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.