🧠 GPT with Modified Memorizing Transformer

An extended GPT-style 118m param model that integrates the key ideas from "Memorizing Transformers" (Wu et al., 2022) with practical enhancements like Grouped Query Attention, KNN-based memory lookup, RoPE, and XL-style memory recurrence.

This model is designed for scalable training, long-context understanding, and efficient memory usage.


Key Modifications from the Original Paper:

  1. Replaced the default positional encoding with Rotary Positional Embeddings (RoPE) ,
  2. Altered the attention mechanism to use Grouped Query Attention ,
  3. Customized the DataLoader to support sharded datasets and data parallelism ,
  4. Implemented Mixed Precision Training along with Distributed Data Parallel (DDP) support ,
  5. Tweaked several training and model hyperparameters for better adaptability .

πŸ”¬ Key Features

  • βœ… Grouped Query Attention (GQA) β€” Groups query heads to share key/value heads, saving memory and speeding up attention
  • βœ… KNN Memory β€” A learnable mechanism to retrieve past activations via nearest-neighbor search
  • βœ… XL-style Attention β€” Adds recurrence to the attention stack, improving long-sequence learning
  • βœ… Rotary Positional Encoding (RoPE) β€” Replaces standard sin-cos encoding for better extrapolation
  • βœ… Memory Lifespan & Clearing β€” Custom mechanisms to manage token memory duration
  • βœ… Sharded Dataset Loader β€” Efficient .npy-based streaming for large datasets
  • βœ… Mixed Precision + DDP Training β€” Scalable multi-GPU support using torchrun and torch.autocast

πŸ“ Project Structure

MEM_TRANSFORMER/
β”œβ”€β”€ configs/
β”‚   └── config.json                  # Model + training hyperparameters
β”‚
β”œβ”€β”€ data/
β”‚   β”œβ”€β”€ edu_fineweb/                 # Token-sharded training data
β”‚   β”‚   β”œβ”€β”€ train_000001.npy
β”‚   β”‚   β”œβ”€β”€ train_000002.npy
β”‚   β”‚   └── test_000001.npy
β”‚   β”œβ”€β”€ hellaswag/
β”‚   β”‚   └── hellaswag_val.jsonl
β”‚   └── fineweb.py                   # Sharding logic with memory-aligned sequence control
β”‚
β”œβ”€β”€ model_core/
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ attention.py                 # Grouped Query Attention, KNN & XL attention logic.Rotary Positional Encoding implementation
β”‚   β”œβ”€β”€ model.py                     # Transformer model with memory and RoPE support
β”‚   β”œβ”€β”€ dataloader.py                # Memory-aware DataLoader
β”‚   └── training.py                  # train_memgpt function
β”‚
β”œβ”€β”€ scripts/
β”‚   β”œβ”€β”€ train.py                     # Training script (DDP-compatible)
β”‚   β”œβ”€β”€ evaluate.py                  # Evaluation on benchmarks
β”‚   └── generate.py                  # Text generation from trained model
β”‚
β”œβ”€β”€ evaluation/
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ hellaswag.py                 # HellaSwag data loader
β”‚   └── val_hellaswag.py             # Evaluation logic with loss-based scoring
β”‚
β”œβ”€β”€ logs/
β”‚   β”œβ”€β”€ log.txt                      # Training logs
β”‚   └── model_*.pt                   # Checkpoints
β”‚
β”œβ”€β”€ .gitignore
β”œβ”€β”€ README.md
β”œβ”€β”€ requirements.txt

βš™οΈ Configuration

Edit configs/config.json to change model or training settings.

Example config
{
  "model": {
    "block_size": 1024,
    "vocab_size": 50304,
    "n_layer": 12,
    "n_head": 12,
    "n_embd": 768,
    "n_kv_head": 4,
    "max_knn_memories": 81920
  },
  "training": {
    "max_steps": 19073,
    "log_dir": "log",
    "total_batch_size": 2048,
    "B": 64,
    "T": 1024,
    "max_lr": 0.0006,
    "min_lr": 0.00006,
    "warmup_steps": 715,
    "weight_decay": 0.1,
    "learning_rate": 0.0006
  }
}
πŸš€ Training ▢️ Single GPU:python scripts/train.py πŸ” Multi-GPU DDP:torchrun --nproc_per_node=NUM_GPUS scripts/train.py

πŸ“Š Evaluation Evaluate on the HellaSwag benchmark:

python scripts/evaluate.py

Requires:

data/hellaswag/hellaswag_val.jsonl

Model checkpoint(s) in logs/

Scoring is based on masked token loss across multiple choice completions

🧠 Attention Mechanism Deep Dive

Grouped Query Attention (GQA) n_head = total query heads

n_kv_head = shared key/value heads

Reduces compute overhead for large models by grouping query heads to reuse K/V

KNN Memory Retrieval Maintains memory of past key vectors (max: 81920 tokens)

Fast KNN lookup with grouped projections

Integrated into attention flow using model_core/attention.py

XL-style Recurrence Recurrence between attention blocks

Memory cache updated at each step

Custom clearing logic helps avoid stale activations

Rotary Positional Encoding (RoPE) Replaces standard sinusoidal encoding

Better generalization on long contexts

Found in model_core/attention.py

🧩 Data Handling Training data is sharded .npy files

Matching stride/memory length logic

DDP-compatible DataLoader

πŸ“¦ Install Dependencies

pip install -r requirements.txt

Ensure that PyTorch and CUDA versions match your local GPU.

πŸ”— Reference Wu et al., Memorizing Transformers, NeurIPS 2022 Paper link

πŸ’‘ Future Work Add LoRA support

Integrate with Hugging Face transformers API

Add benchmarking on other datasets (e.g. LAMBADA, PIQA)

Built with ❀️ by abhinavv3

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train abhinavv3/GPT_with_Modified_Memorizing_Transformer