Llama-3.2-3B Fine-tuned on ultrafeedback_chosen

This model is a fine-tuned version of meta-llama/Llama-3.2-3B on the activeDap/ultrafeedback_chosen dataset.

Training Results

Training Loss

Training Statistics

Metric Value
Total Steps 955
Final Training Loss 1.0112
Min Training Loss 0.9439
Training Runtime 5891.15 seconds
Samples/Second 10.37

Training Configuration

Parameter Value
Base Model meta-llama/Llama-3.2-3B
Dataset activeDap/ultrafeedback_chosen
Number of Epochs 1.0
Per Device Batch Size 4
Gradient Accumulation Steps 4
Total Batch Size 64 (4 GPUs)
Learning Rate 5e-05
LR Scheduler cosine
Warmup Ratio 0.1
Max Sequence Length 1024
Optimizer adamw_torch
Mixed Precision BF16

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "activeDap/Llama-3.2-3B_ultrafeedback_chosen"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Format input with prompt template
prompt = "What is machine learning?\nAssistant:"
inputs = tokenizer(prompt, return_tensors="pt")

# Generate response
outputs = model.generate(**inputs, max_new_tokens=100)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

Training Framework

  • Library: Transformers + TRL
  • Training Type: Supervised Fine-Tuning (SFT)
  • Format: Prompt-completion with Assistant-only loss

Citation

If you use this model, please cite the original base model and dataset:

@misc{ultrafeedback2023,
      title={UltraFeedback: Boosting Language Models with High-quality Feedback},
      author={Ganqu Cui and Lifan Yuan and Ning Ding and others},
      year={2023},
      eprint={2310.01377},
      archivePrefix={arXiv}
}
Downloads last month
11
Safetensors
Model size
3.21B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for activeDap/Llama-3.2-3B_ultrafeedback_chosen

Finetuned
(341)
this model

Dataset used to train activeDap/Llama-3.2-3B_ultrafeedback_chosen