bros-funsd-finetuned

This model is a fine-tuned version of naver-clova-ocr/bros-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7866
  • Precision: 0.5993
  • Recall: 0.6416
  • F1: 0.6197
  • Accuracy: 0.7016

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 10 1.6503 0.0207 0.0032 0.0055 0.3213
No log 2.0 20 1.5622 0.1480 0.0596 0.0850 0.3890
No log 3.0 30 1.5357 0.0770 0.0672 0.0717 0.3803
No log 4.0 40 1.5160 0.1058 0.0976 0.1015 0.4078
No log 5.0 50 1.4925 0.1608 0.1768 0.1684 0.4354
No log 6.0 60 1.4216 0.2011 0.2288 0.2141 0.4571
No log 7.0 70 1.3546 0.2565 0.3241 0.2864 0.5001
No log 8.0 80 1.2950 0.2829 0.3818 0.3250 0.5048
No log 9.0 90 1.2862 0.2909 0.3745 0.3275 0.5226
No log 10.0 100 1.2108 0.2911 0.3815 0.3302 0.5491
No log 11.0 110 1.2023 0.3348 0.3609 0.3474 0.5545
No log 12.0 120 1.1720 0.3616 0.4030 0.3812 0.5668
No log 13.0 130 1.1267 0.3600 0.4005 0.3792 0.5825
No log 14.0 140 1.1025 0.3677 0.4499 0.4047 0.6144
No log 15.0 150 1.1038 0.3914 0.4655 0.4252 0.6182
No log 16.0 160 1.1034 0.4144 0.4769 0.4434 0.6399
No log 17.0 170 1.1885 0.4136 0.5250 0.4627 0.6303
No log 18.0 180 1.1734 0.4652 0.4854 0.4751 0.6491
No log 19.0 190 1.2263 0.4312 0.5995 0.5016 0.6457
No log 20.0 200 1.2326 0.4482 0.5612 0.4984 0.6478
No log 21.0 210 1.1374 0.4892 0.5954 0.5371 0.6776
No log 22.0 220 1.2278 0.4939 0.5779 0.5326 0.6712
No log 23.0 230 1.2979 0.4728 0.6030 0.5300 0.6642
No log 24.0 240 1.3170 0.4885 0.5916 0.5351 0.6682
No log 25.0 250 1.3692 0.4746 0.6011 0.5304 0.6596
No log 26.0 260 1.3706 0.5121 0.6106 0.5570 0.6742
No log 27.0 270 1.4494 0.5195 0.6036 0.5584 0.6719
No log 28.0 280 1.4790 0.5207 0.6027 0.5587 0.6678
No log 29.0 290 1.4106 0.5499 0.5887 0.5686 0.6838
No log 30.0 300 1.4539 0.5607 0.5954 0.5775 0.6810
No log 31.0 310 1.4746 0.5681 0.5989 0.5831 0.6827
No log 32.0 320 1.5373 0.5233 0.6144 0.5652 0.6698
No log 33.0 330 1.6007 0.5131 0.6353 0.5677 0.6682
No log 34.0 340 1.5237 0.5392 0.6489 0.5890 0.6868
No log 35.0 350 1.5382 0.5439 0.6239 0.5812 0.6908
No log 36.0 360 1.5363 0.5615 0.6071 0.5834 0.6872
No log 37.0 370 1.5504 0.5572 0.6201 0.5870 0.6943
No log 38.0 380 1.6496 0.5478 0.6176 0.5806 0.6796
No log 39.0 390 1.6083 0.5665 0.6144 0.5895 0.6913
No log 40.0 400 1.5588 0.5719 0.6239 0.5968 0.6977
No log 41.0 410 1.6280 0.5578 0.6328 0.5929 0.6928
No log 42.0 420 1.5925 0.5842 0.6112 0.5974 0.7023
No log 43.0 430 1.5921 0.5810 0.6204 0.6001 0.6981
No log 44.0 440 1.6152 0.5740 0.6207 0.5964 0.6917
No log 45.0 450 1.6629 0.5634 0.6283 0.5941 0.6853
No log 46.0 460 1.6112 0.5829 0.6214 0.6015 0.7021
No log 47.0 470 1.6214 0.5761 0.6258 0.5999 0.6982
No log 48.0 480 1.6216 0.5953 0.6119 0.6034 0.7023
No log 49.0 490 1.6592 0.5809 0.6163 0.5981 0.6962
0.4349 50.0 500 1.6796 0.5603 0.6489 0.6014 0.6947
0.4349 51.0 510 1.6835 0.5967 0.6001 0.5984 0.6933
0.4349 52.0 520 1.6615 0.5832 0.6553 0.6171 0.6999
0.4349 53.0 530 1.6553 0.5778 0.6565 0.6147 0.6970
0.4349 54.0 540 1.6980 0.5946 0.6004 0.5975 0.6888
0.4349 55.0 550 1.6484 0.5694 0.6356 0.6007 0.6960
0.4349 56.0 560 1.6996 0.5902 0.6293 0.6091 0.6941
0.4349 57.0 570 1.6973 0.5780 0.6337 0.6046 0.6947
0.4349 58.0 580 1.7212 0.5973 0.6087 0.6030 0.6969
0.4349 59.0 590 1.7086 0.5791 0.6435 0.6096 0.6976
0.4349 60.0 600 1.6767 0.5845 0.6233 0.6033 0.6996
0.4349 61.0 610 1.6744 0.5886 0.6201 0.6039 0.6993
0.4349 62.0 620 1.6783 0.5989 0.6286 0.6134 0.6999
0.4349 63.0 630 1.6958 0.5936 0.6489 0.6200 0.7019
0.4349 64.0 640 1.7297 0.5806 0.6286 0.6037 0.6941
0.4349 65.0 650 1.7373 0.5804 0.6540 0.6150 0.6961
0.4349 66.0 660 1.7579 0.5818 0.6404 0.6097 0.6941
0.4349 67.0 670 1.7654 0.5889 0.6369 0.6120 0.6971
0.4349 68.0 680 1.7649 0.5846 0.6515 0.6162 0.6953
0.4349 69.0 690 1.7294 0.5940 0.6445 0.6182 0.6999
0.4349 70.0 700 1.7256 0.5871 0.6511 0.6175 0.7021
0.4349 71.0 710 1.7303 0.5889 0.6518 0.6187 0.7029
0.4349 72.0 720 1.7391 0.5994 0.6334 0.6159 0.7023
0.4349 73.0 730 1.7270 0.5838 0.6448 0.6128 0.6999
0.4349 74.0 740 1.7357 0.6060 0.6324 0.6189 0.7035
0.4349 75.0 750 1.7210 0.6030 0.6362 0.6192 0.7036
0.4349 76.0 760 1.7575 0.5903 0.6473 0.6175 0.6990
0.4349 77.0 770 1.7530 0.5859 0.6416 0.6125 0.6958
0.4349 78.0 780 1.7395 0.5865 0.6445 0.6141 0.6988
0.4349 79.0 790 1.7432 0.5900 0.6575 0.6219 0.7025
0.4349 80.0 800 1.7497 0.5957 0.6556 0.6242 0.7039
0.4349 81.0 810 1.7590 0.6003 0.6467 0.6226 0.7040
0.4349 82.0 820 1.7641 0.5979 0.6413 0.6189 0.7019
0.4349 83.0 830 1.7632 0.6103 0.6407 0.6251 0.7070
0.4349 84.0 840 1.7602 0.6082 0.6420 0.6246 0.7066
0.4349 85.0 850 1.7697 0.6014 0.6458 0.6228 0.7051
0.4349 86.0 860 1.7828 0.5945 0.6397 0.6163 0.7001
0.4349 87.0 870 1.7834 0.6005 0.6369 0.6182 0.7005
0.4349 88.0 880 1.7760 0.5966 0.6388 0.6170 0.7013
0.4349 89.0 890 1.7757 0.5942 0.6426 0.6174 0.7021
0.4349 90.0 900 1.7755 0.5946 0.6442 0.6184 0.7025
0.4349 91.0 910 1.7778 0.5964 0.6432 0.6189 0.7012
0.4349 92.0 920 1.7757 0.5993 0.6435 0.6206 0.7019
0.4349 93.0 930 1.7751 0.6014 0.6448 0.6223 0.7025
0.4349 94.0 940 1.7769 0.6024 0.6410 0.6211 0.7025
0.4349 95.0 950 1.7791 0.6026 0.6394 0.6204 0.7020
0.4349 96.0 960 1.7862 0.6016 0.6381 0.6193 0.7012
0.4349 97.0 970 1.7876 0.5985 0.6410 0.6190 0.7007
0.4349 98.0 980 1.7882 0.5976 0.6404 0.6182 0.7012
0.4349 99.0 990 1.7870 0.5988 0.6413 0.6193 0.7014
0.0052 100.0 1000 1.7866 0.5993 0.6416 0.6197 0.7016

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
8
Safetensors
Model size
110M params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for adamadam111/bros-funsd-finetuned

Finetuned
(1)
this model

Evaluation results