layoutlmv3-finetuned-funsd
This model is a fine-tuned version of microsoft/layoutlmv3-base on the funsd dataset. It achieves the following results on the evaluation set:
- Loss: 1.1059
- Precision: 0.7823
- Recall: 0.8281
- F1: 0.8045
- Accuracy: 0.8135
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 10.0 | 100 | 0.7158 | 0.6964 | 0.7690 | 0.7309 | 0.7833 |
No log | 20.0 | 200 | 0.7508 | 0.7420 | 0.8058 | 0.7726 | 0.8076 |
No log | 30.0 | 300 | 0.8085 | 0.7678 | 0.8097 | 0.7882 | 0.8078 |
No log | 40.0 | 400 | 0.9083 | 0.7689 | 0.8147 | 0.7911 | 0.8061 |
0.3419 | 50.0 | 500 | 0.9294 | 0.7840 | 0.8296 | 0.8062 | 0.8128 |
0.3419 | 60.0 | 600 | 1.0036 | 0.7807 | 0.8366 | 0.8077 | 0.8178 |
0.3419 | 70.0 | 700 | 1.0983 | 0.7727 | 0.8241 | 0.7976 | 0.8044 |
0.3419 | 80.0 | 800 | 1.1092 | 0.7921 | 0.8251 | 0.8083 | 0.8064 |
0.3419 | 90.0 | 900 | 1.1010 | 0.7780 | 0.8306 | 0.8035 | 0.8133 |
0.0261 | 100.0 | 1000 | 1.1059 | 0.7823 | 0.8281 | 0.8045 | 0.8135 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 102
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for adamadam111/layoutlmv3-finetuned-funsd
Base model
microsoft/layoutlmv3-baseEvaluation results
- Precision on funsdtest set self-reported0.782
- Recall on funsdtest set self-reported0.828
- F1 on funsdtest set self-reported0.805
- Accuracy on funsdtest set self-reported0.814