metadata
language:
- en
license: apache-2.0
tags:
- cross-encoder
- sentence-transformers
- quora
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:363861
- loss:BinaryCrossEntropyLoss
base_model: cross-encoder/ms-marco-MiniLM-L6-v2
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- accuracy
- accuracy_threshold
- f1
- f1_threshold
- precision
- recall
- average_precision
model-index:
- name: >-
Redis semantic caching CrossEncoder model fine-tuned on Quora Question
Pairs
results:
- task:
type: cross-encoder-classification
name: Cross Encoder Classification
dataset:
name: quora eval
type: quora-eval
metrics:
- type: accuracy
value: 0.6956145341215464
name: Accuracy
- type: accuracy_threshold
value: 4.168765068054199
name: Accuracy Threshold
- type: f1
value: 0.5947228598694901
name: F1
- type: f1_threshold
value: 3.341184139251709
name: F1 Threshold
- type: precision
value: 0.4833759590792839
name: Precision
- type: recall
value: 0.7727211796246649
name: Recall
- type: average_precision
value: 0.6228630274737263
name: Average Precision
Redis semantic caching CrossEncoder model fine-tuned on Quora Question Pairs
This is a Cross Encoder model finetuned from cross-encoder/ms-marco-MiniLM-L6-v2 on the Quora Question Pairs LangCache Train Set dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for sentence pair classification.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: cross-encoder/ms-marco-MiniLM-L6-v2
- Maximum Sequence Length: 512 tokens
- Number of Output Labels: 1 label
- Training Dataset:
- Quora Question Pairs LangCache Train Set
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("aditeyabaral-redis/langcache-crossencoder-v1-ms-marco-MiniLM-L6-v2")
# Get scores for pairs of texts
pairs = [
['How can I get a list of my Gmail accounts?', 'How can I find all my old Gmail accounts?'],
['How can I stop Quora from modifying and editing other people’s questions on Quora?', 'Can I prevent a Quora user from editing my question on Quora?'],
['How much does it cost to design a logo in india?', 'How much does it cost to design a logo?'],
['What is screenedrenters.com?', 'What is allmyapps.com?'],
['What are the best colleges for an MBA in Australia?', 'What are the top MBA schools in Australia?'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'How can I get a list of my Gmail accounts?',
[
'How can I find all my old Gmail accounts?',
'Can I prevent a Quora user from editing my question on Quora?',
'How much does it cost to design a logo?',
'What is allmyapps.com?',
'What are the top MBA schools in Australia?',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Classification
- Dataset:
quora-eval
- Evaluated with
CrossEncoderClassificationEvaluator
Metric | Value |
---|---|
accuracy | 0.6956 |
accuracy_threshold | 4.1688 |
f1 | 0.5947 |
f1_threshold | 3.3412 |
precision | 0.4834 |
recall | 0.7727 |
average_precision | 0.6229 |
Training Details
Training Dataset
Quora Question Pairs LangCache Train Set
- Dataset: Quora Question Pairs LangCache Train Set
- Size: 363,861 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 15 characters
- mean: 60.22 characters
- max: 229 characters
- min: 14 characters
- mean: 60.0 characters
- max: 274 characters
- 0: ~63.50%
- 1: ~36.50%
- Samples:
sentence1 sentence2 label Why do people believe in God and how can they say he/she exists?
Why do we kill each other in the name of God?
0
What are the chances of a bee sting when a bee buzzes around you?
How can I tell if my bees are agitated/likely to sting?
0
If a man from Syro Malankara church marries a Syro-Malabar girl, can they join a Syro-Malabar parish?
Is Malabar Hills of Mumbai anyhow related to Malabar of Kerala?
0
- Loss:
BinaryCrossEntropyLoss
with these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null }
Evaluation Dataset
Quora Question Pairs LangCache Validation Set
- Dataset: Quora Question Pairs LangCache Validation Set
- Size: 40,429 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 13 characters
- mean: 59.91 characters
- max: 266 characters
- min: 13 characters
- mean: 59.51 characters
- max: 293 characters
- 0: ~63.80%
- 1: ~36.20%
- Samples:
sentence1 sentence2 label How can I get a list of my Gmail accounts?
How can I find all my old Gmail accounts?
1
How can I stop Quora from modifying and editing other people’s questions on Quora?
Can I prevent a Quora user from editing my question on Quora?
1
How much does it cost to design a logo in india?
How much does it cost to design a logo?
0
- Loss:
BinaryCrossEntropyLoss
with these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 0.0002num_train_epochs
: 15load_best_model_at_end
: Truepush_to_hub
: Truehub_model_id
: aditeyabaral-redis/langcache-crossencoder-v1-ms-marco-MiniLM-L6-v2
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0002weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 15max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: aditeyabaral-redis/langcache-crossencoder-v1-ms-marco-MiniLM-L6-v2hub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | quora-eval_average_precision |
---|---|---|---|---|
0.0879 | 500 | 0.3913 | 0.3302 | 0.5603 |
0.1759 | 1000 | 0.3408 | 0.3220 | 0.5932 |
0.2638 | 1500 | 0.3318 | 0.3249 | 0.6144 |
0.3517 | 2000 | 0.3235 | 0.3027 | 0.6280 |
0.4397 | 2500 | 0.3173 | 0.2944 | 0.6233 |
0.5276 | 3000 | 0.3049 | 0.3009 | 0.6685 |
0.6155 | 3500 | 0.3071 | 0.2908 | 0.6221 |
0.7035 | 4000 | 0.3015 | 0.2854 | 0.6143 |
0.7914 | 4500 | 0.2944 | 0.2759 | 0.6361 |
0.8794 | 5000 | 0.2984 | 0.2854 | 0.6616 |
0.9673 | 5500 | 0.2898 | 0.3002 | 0.6109 |
1.0552 | 6000 | 0.2552 | 0.2800 | 0.6466 |
1.1432 | 6500 | 0.2352 | 0.2821 | 0.6305 |
1.2311 | 7000 | 0.2366 | 0.2778 | 0.5699 |
1.3190 | 7500 | 0.2332 | 0.2831 | 0.6076 |
1.4070 | 8000 | 0.2366 | 0.2783 | 0.6003 |
1.4949 | 8500 | 0.2391 | 0.2716 | 0.6195 |
1.5828 | 9000 | 0.241 | 0.2685 | 0.6229 |
1.6708 | 9500 | 0.2359 | 0.2804 | 0.6410 |
1.7587 | 10000 | 0.2374 | 0.2819 | 0.6448 |
1.8466 | 10500 | 0.2387 | 0.2750 | 0.6479 |
1.9346 | 11000 | 0.2343 | 0.2734 | 0.6034 |
2.0225 | 11500 | 0.2193 | 0.3168 | 0.6384 |
2.1104 | 12000 | 0.1741 | 0.3011 | 0.6189 |
2.1984 | 12500 | 0.1732 | 0.2988 | 0.6412 |
2.2863 | 13000 | 0.1814 | 0.2839 | 0.6156 |
2.3743 | 13500 | 0.1815 | 0.2930 | 0.5520 |
2.4622 | 14000 | 0.1774 | 0.3461 | 0.6195 |
2.5501 | 14500 | 0.1886 | 0.3033 | 0.6113 |
2.6381 | 15000 | 0.1831 | 0.2925 | 0.5815 |
2.7260 | 15500 | 0.1889 | 0.2801 | 0.5701 |
2.8139 | 16000 | 0.1869 | 0.2893 | 0.6090 |
2.9019 | 16500 | 0.1896 | 0.3038 | 0.6142 |
2.9898 | 17000 | 0.1967 | 0.2791 | 0.5967 |
3.0777 | 17500 | 0.1395 | 0.3119 | 0.5672 |
3.1657 | 18000 | 0.1392 | 0.3052 | 0.5876 |
3.2536 | 18500 | 0.1411 | 0.3030 | 0.6064 |
3.3415 | 19000 | 0.1356 | 0.3064 | 0.5535 |
3.4295 | 19500 | 0.14 | 0.3144 | 0.5978 |
3.5174 | 20000 | 0.1461 | 0.3332 | 0.5961 |
3.6053 | 20500 | 0.1468 | 0.3179 | 0.5975 |
3.6933 | 21000 | 0.1487 | 0.3327 | 0.5932 |
3.7812 | 21500 | 0.1479 | 0.3340 | 0.5888 |
3.8692 | 22000 | 0.1458 | 0.3172 | 0.5478 |
3.9571 | 22500 | 0.1566 | 0.3036 | 0.5926 |
4.0450 | 23000 | 0.1257 | 0.3552 | 0.5941 |
4.1330 | 23500 | 0.1004 | 0.3886 | 0.5067 |
4.2209 | 24000 | 0.1061 | 0.3682 | 0.5654 |
4.3088 | 24500 | 0.1087 | 0.3212 | 0.5556 |
4.3968 | 25000 | 0.11 | 0.3348 | 0.5628 |
4.4847 | 25500 | 0.1108 | 0.3740 | 0.5046 |
4.5726 | 26000 | 0.1169 | 0.3092 | 0.5882 |
4.6606 | 26500 | 0.1156 | 0.3498 | 0.4988 |
4.7485 | 27000 | 0.1232 | 0.3042 | 0.5801 |
4.8364 | 27500 | 0.1195 | 0.3685 | 0.5793 |
4.9244 | 28000 | 0.122 | 0.3199 | 0.5383 |
5.0123 | 28500 | 0.1151 | 0.4291 | 0.5510 |
5.1002 | 29000 | 0.0815 | 0.4297 | 0.4973 |
5.1882 | 29500 | 0.086 | 0.4798 | 0.4969 |
5.2761 | 30000 | 0.0892 | 0.4475 | 0.5230 |
5.3641 | 30500 | 0.0888 | 0.4165 | 0.4267 |
5.4520 | 31000 | 0.0929 | 0.4398 | 0.4674 |
5.5399 | 31500 | 0.0929 | 0.4551 | 0.4629 |
5.6279 | 32000 | 0.0928 | 0.3756 | 0.4537 |
5.7158 | 32500 | 0.0961 | 0.4014 | 0.5037 |
5.8037 | 33000 | 0.0924 | 0.3953 | 0.5158 |
5.8917 | 33500 | 0.0988 | 0.3890 | 0.5355 |
5.9796 | 34000 | 0.0963 | 0.3823 | 0.5130 |
6.0675 | 34500 | 0.0738 | 0.4251 | 0.4924 |
6.1555 | 35000 | 0.0681 | 0.4444 | 0.4891 |
6.2434 | 35500 | 0.0703 | 0.4472 | 0.4994 |
6.3313 | 36000 | 0.071 | 0.4552 | 0.4920 |
6.4193 | 36500 | 0.0706 | 0.4149 | 0.4726 |
6.5072 | 37000 | 0.0751 | 0.3840 | 0.4771 |
6.5951 | 37500 | 0.0708 | 0.4455 | 0.5152 |
6.6831 | 38000 | 0.0775 | 0.4124 | 0.4290 |
6.7710 | 38500 | 0.0766 | 0.4004 | 0.4459 |
6.8590 | 39000 | 0.0811 | 0.4209 | 0.4192 |
6.9469 | 39500 | 0.0766 | 0.4294 | 0.4805 |
7.0348 | 40000 | 0.07 | 0.4470 | 0.4623 |
7.1228 | 40500 | 0.05 | 0.5520 | 0.4211 |
7.2107 | 41000 | 0.0555 | 0.4425 | 0.3890 |
7.2986 | 41500 | 0.057 | 0.5324 | 0.4204 |
7.3866 | 42000 | 0.06 | 0.4664 | 0.4517 |
7.4745 | 42500 | 0.0583 | 0.4506 | 0.4966 |
7.5624 | 43000 | 0.0582 | 0.4441 | 0.4659 |
7.6504 | 43500 | 0.0615 | 0.4528 | 0.4495 |
7.7383 | 44000 | 0.0614 | 0.4744 | 0.4350 |
7.8262 | 44500 | 0.0605 | 0.4272 | 0.4630 |
7.9142 | 45000 | 0.0625 | 0.4709 | 0.4414 |
8.0021 | 45500 | 0.065 | 0.4513 | 0.4060 |
8.0900 | 46000 | 0.0412 | 0.6073 | 0.3839 |
8.1780 | 46500 | 0.0431 | 0.5060 | 0.3656 |
8.2659 | 47000 | 0.0425 | 0.5438 | 0.4042 |
8.3539 | 47500 | 0.0462 | 0.5835 | 0.4171 |
8.4418 | 48000 | 0.0475 | 0.5035 | 0.4144 |
8.5297 | 48500 | 0.0476 | 0.5046 | 0.4105 |
8.6177 | 49000 | 0.0483 | 0.5080 | 0.4071 |
8.7056 | 49500 | 0.0487 | 0.5682 | 0.4130 |
8.7935 | 50000 | 0.049 | 0.5026 | 0.4283 |
8.8815 | 50500 | 0.0517 | 0.4920 | 0.3529 |
8.9694 | 51000 | 0.0495 | 0.4956 | 0.4038 |
9.0573 | 51500 | 0.0378 | 0.5368 | 0.3654 |
9.1453 | 52000 | 0.0328 | 0.4895 | 0.3775 |
9.2332 | 52500 | 0.0337 | 0.5245 | 0.4051 |
9.3211 | 53000 | 0.0361 | 0.5925 | 0.3984 |
9.4091 | 53500 | 0.0369 | 0.5197 | 0.4134 |
9.4970 | 54000 | 0.0388 | 0.5246 | 0.4186 |
9.5849 | 54500 | 0.0364 | 0.5243 | 0.4245 |
9.6729 | 55000 | 0.0373 | 0.5164 | 0.4119 |
9.7608 | 55500 | 0.0358 | 0.6019 | 0.4171 |
9.8488 | 56000 | 0.0364 | 0.6166 | 0.4050 |
9.9367 | 56500 | 0.0406 | 0.5238 | 0.4329 |
10.0246 | 57000 | 0.0361 | 0.6156 | 0.4138 |
10.1126 | 57500 | 0.0267 | 0.5612 | 0.4073 |
10.2005 | 58000 | 0.023 | 0.6370 | 0.4049 |
10.2884 | 58500 | 0.0293 | 0.5876 | 0.4069 |
10.3764 | 59000 | 0.0255 | 0.6200 | 0.4239 |
10.4643 | 59500 | 0.0282 | 0.5882 | 0.4085 |
10.5522 | 60000 | 0.0307 | 0.5499 | 0.4084 |
10.6402 | 60500 | 0.0294 | 0.6012 | 0.3956 |
10.7281 | 61000 | 0.0283 | 0.6330 | 0.4027 |
10.8160 | 61500 | 0.0323 | 0.5620 | 0.4037 |
10.9040 | 62000 | 0.0305 | 0.6073 | 0.4067 |
10.9919 | 62500 | 0.0284 | 0.5969 | 0.4048 |
11.0798 | 63000 | 0.0194 | 0.6831 | 0.4041 |
11.1678 | 63500 | 0.0209 | 0.6346 | 0.3937 |
11.2557 | 64000 | 0.0183 | 0.6610 | 0.3691 |
11.3437 | 64500 | 0.0221 | 0.6509 | 0.3755 |
11.4316 | 65000 | 0.0217 | 0.7004 | 0.4256 |
11.5195 | 65500 | 0.0239 | 0.5978 | 0.4087 |
11.6075 | 66000 | 0.0234 | 0.6237 | 0.3687 |
11.6954 | 66500 | 0.0222 | 0.5774 | 0.4177 |
11.7833 | 67000 | 0.0234 | 0.6203 | 0.4368 |
11.8713 | 67500 | 0.0216 | 0.5981 | 0.4396 |
11.9592 | 68000 | 0.0235 | 0.5636 | 0.4338 |
12.0471 | 68500 | 0.0193 | 0.6815 | 0.4295 |
12.1351 | 69000 | 0.0154 | 0.6883 | 0.4516 |
12.2230 | 69500 | 0.0153 | 0.7075 | 0.4128 |
12.3109 | 70000 | 0.0155 | 0.6650 | 0.4300 |
12.3989 | 70500 | 0.0147 | 0.7161 | 0.4029 |
12.4868 | 71000 | 0.015 | 0.7274 | 0.4082 |
12.5747 | 71500 | 0.0172 | 0.6526 | 0.3834 |
12.6627 | 72000 | 0.0156 | 0.6420 | 0.3574 |
12.7506 | 72500 | 0.0158 | 0.6716 | 0.3905 |
12.8386 | 73000 | 0.0165 | 0.6757 | 0.3805 |
12.9265 | 73500 | 0.0144 | 0.6964 | 0.3932 |
13.0144 | 74000 | 0.0133 | 0.7359 | 0.3913 |
13.1024 | 74500 | 0.0137 | 0.7126 | 0.4071 |
13.1903 | 75000 | 0.0118 | 0.7234 | 0.4115 |
13.2782 | 75500 | 0.0117 | 0.7391 | 0.4225 |
13.3662 | 76000 | 0.0123 | 0.7435 | 0.3931 |
13.4541 | 76500 | 0.0121 | 0.7334 | 0.4033 |
13.5420 | 77000 | 0.0114 | 0.7370 | 0.3965 |
13.6300 | 77500 | 0.0107 | 0.7646 | 0.4340 |
13.7179 | 78000 | 0.0123 | 0.7255 | 0.4015 |
13.8058 | 78500 | 0.0129 | 0.6944 | 0.3901 |
13.8938 | 79000 | 0.0097 | 0.7561 | 0.4181 |
13.9817 | 79500 | 0.0121 | 0.7178 | 0.3991 |
14.0696 | 80000 | 0.0087 | 0.7505 | 0.3858 |
14.1576 | 80500 | 0.0071 | 0.7765 | 0.3827 |
14.2455 | 81000 | 0.0082 | 0.7851 | 0.3812 |
14.3335 | 81500 | 0.0094 | 0.7683 | 0.3877 |
14.4214 | 82000 | 0.0076 | 0.7705 | 0.3938 |
14.5093 | 82500 | 0.0071 | 0.7653 | 0.3916 |
14.5973 | 83000 | 0.0092 | 0.7557 | 0.3851 |
14.6852 | 83500 | 0.0058 | 0.7718 | 0.3889 |
14.7731 | 84000 | 0.0069 | 0.7753 | 0.3895 |
14.8611 | 84500 | 0.0083 | 0.7706 | 0.3902 |
14.9490 | 85000 | 0.0075 | 0.7741 | 0.3909 |
-1 | -1 | - | - | 0.6229 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}