gemini_chakma_ai4indic
This model is a fine-tuned version of ai4bharat/indic-bert on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.5834
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.1266 | 1.0 | 162 | 4.5210 |
3.653 | 2.0 | 324 | 4.2779 |
3.4327 | 3.0 | 486 | 4.0695 |
3.317 | 4.0 | 648 | 3.9998 |
3.2046 | 5.0 | 810 | 3.9530 |
3.1096 | 6.0 | 972 | 3.8994 |
3.0451 | 7.0 | 1134 | 3.8628 |
3.0244 | 8.0 | 1296 | 3.7406 |
2.9736 | 9.0 | 1458 | 3.6823 |
2.9345 | 10.0 | 1620 | 3.7661 |
2.8932 | 11.0 | 1782 | 3.6943 |
2.8789 | 12.0 | 1944 | 3.6660 |
2.8254 | 13.0 | 2106 | 3.6488 |
2.8338 | 14.0 | 2268 | 3.6219 |
2.7854 | 15.0 | 2430 | 3.5199 |
2.7878 | 16.0 | 2592 | 3.6030 |
2.8031 | 17.0 | 2754 | 3.5799 |
2.7622 | 18.0 | 2916 | 3.5498 |
2.7232 | 19.0 | 3078 | 3.5592 |
2.7826 | 20.0 | 3240 | 3.5834 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 11
Model tree for adity12345/gemini_chakma_ai4indic
Base model
ai4bharat/indic-bert