distilbert-base-uncased-finetuned-sst-2-english_prompt_injection_detector

This model is a fine-tuned version of distilbert/distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1457
  • Accuracy: 0.9583
  • Precision: 0.9611
  • Recall: 0.9583
  • F1: 0.9580

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.348061478440594e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 4 0.5652 0.7917 0.8032 0.7917 0.7834
No log 2.0 8 0.2373 0.875 0.8759 0.875 0.8739
No log 3.0 12 0.1569 0.9583 0.9611 0.9583 0.9580
No log 4.0 16 0.1457 0.9583 0.9611 0.9583 0.9580

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.0
Downloads last month
51
Safetensors
Model size
67M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for adobe-codemay2025/distilbert-base-uncased-finetuned-sst-2-english_prompt_injection_detector