metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: results
results: []
results
This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2467
- Accuracy: 0.9374
- Precision: 0.9375
- Recall: 0.9374
- F1: 0.9374
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.6638665069732033e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 0.1729 | 1.0 | 1321 | 0.2120 | 0.9365 | 0.9369 | 0.9365 | 0.9365 |
| 0.089 | 2.0 | 2642 | 0.2467 | 0.9374 | 0.9375 | 0.9374 | 0.9374 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1