Edit model card

speecht5_finetuned_storytel

This model is a fine-tuned version of microsoft/speecht5_tts on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4020

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.6213 0.1856 100 0.5374
0.5587 0.3711 200 0.4969
0.5245 0.5567 300 0.4817
0.5127 0.7423 400 0.4697
0.5044 0.9279 500 0.4636
0.5006 1.1141 600 0.4547
0.4924 1.2997 700 0.4512
0.4885 1.4853 800 0.4486
0.4805 1.6708 900 0.4509
0.4807 1.8564 1000 0.4429
0.4794 2.0427 1100 0.4414
0.4748 2.2283 1200 0.4390
0.4697 2.4138 1300 0.4357
0.4713 2.5994 1400 0.4365
0.466 2.7850 1500 0.4344
0.4688 2.9705 1600 0.4335
0.4627 3.1568 1700 0.4302
0.4583 3.3424 1800 0.4273
0.4614 3.5280 1900 0.4308
0.4599 3.7135 2000 0.4254
0.4607 3.8991 2100 0.4323
0.4576 4.0854 2200 0.4366
0.4526 4.2709 2300 0.4257
0.4545 4.4565 2400 0.4234
0.4582 4.6421 2500 0.4248
0.4509 4.8277 2600 0.4252
0.4458 5.0139 2700 0.4180
0.441 5.1995 2800 0.4222
0.4443 5.3851 2900 0.4172
0.4457 5.5706 3000 0.4193
0.444 5.7562 3100 0.4238
0.4414 5.9418 3200 0.4211
0.4392 6.1280 3300 0.4176
0.4446 6.3136 3400 0.4161
0.4428 6.4992 3500 0.4187
0.4409 6.6848 3600 0.4156
0.4363 6.8703 3700 0.4143
0.4426 7.0566 3800 0.4161
0.4344 7.2422 3900 0.4149
0.4327 7.4277 4000 0.4115
0.4318 7.6133 4100 0.4154
0.4401 7.7989 4200 0.4148
0.4328 7.9845 4300 0.4094
0.4336 8.1707 4400 0.4136
0.433 8.3563 4500 0.4089
0.438 8.5419 4600 0.4092
0.4336 8.7274 4700 0.4081
0.4335 8.9130 4800 0.4079
0.4277 9.0993 4900 0.4093
0.4268 9.2849 5000 0.4106
0.4269 9.4704 5100 0.4126
0.4247 9.6560 5200 0.4110
0.4194 9.8416 5300 0.4086
0.4226 10.0278 5400 0.4089
0.4249 10.2134 5500 0.4075
0.4225 10.3990 5600 0.4082
0.4214 10.5846 5700 0.4137
0.4245 10.7701 5800 0.4023
0.4243 10.9557 5900 0.4047
0.4196 11.1420 6000 0.4056
0.4176 11.3275 6100 0.4038
0.4216 11.5131 6200 0.4103
0.4201 11.6987 6300 0.4051
0.415 11.8842 6400 0.4061
0.4152 12.0705 6500 0.4053
0.4174 12.2561 6600 0.4060
0.4104 12.4417 6700 0.4038
0.4143 12.6272 6800 0.4091
0.4172 12.8128 6900 0.4028
0.4122 12.9984 7000 0.4078
0.4136 13.1846 7100 0.4055
0.4101 13.3702 7200 0.4047
0.4096 13.5558 7300 0.4051
0.4137 13.7414 7400 0.4047
0.4088 13.9269 7500 0.4051
0.4096 14.1132 7600 0.4037
0.4117 14.2988 7700 0.4043
0.4076 14.4843 7800 0.4042
0.4086 14.6699 7900 0.4052
0.4062 14.8555 8000 0.4006
0.409 15.0418 8100 0.4026
0.4056 15.2273 8200 0.4018
0.4048 15.4129 8300 0.4019
0.4084 15.5985 8400 0.4018
0.4056 15.7840 8500 0.4004
0.4157 15.9696 8600 0.4033
0.4024 16.1559 8700 0.4019
0.4064 16.3415 8800 0.4033
0.4027 16.5270 8900 0.4050
0.4041 16.7126 9000 0.4009
0.4028 16.8982 9100 0.4036
0.3979 17.0844 9200 0.4025
0.4008 17.2700 9300 0.4019
0.4012 17.4556 9400 0.4000
0.399 17.6412 9500 0.4001
0.3996 17.8267 9600 0.3999
0.4009 18.0130 9700 0.4017
0.4034 18.1986 9800 0.4019
0.3963 18.3841 9900 0.4017
0.3999 18.5697 10000 0.4020

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
7
Safetensors
Model size
144M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for adviyeyilmazer/speecht5_finetuned_storytel

Finetuned
(767)
this model