afrideva's picture
Upload README.md with huggingface_hub
65741f7
---
base_model: KathirKs/phi-2_LogiCoT_finetuned
inference: false
model_creator: KathirKs
model_name: phi-2_LogiCoT_finetuned
pipeline_tag: text-generation
quantized_by: afrideva
tags:
- gguf
- ggml
- quantized
- q2_k
- q3_k_m
- q4_k_m
- q5_k_m
- q6_k
- q8_0
---
# KathirKs/phi-2_LogiCoT_finetuned-GGUF
Quantized GGUF model files for [phi-2_LogiCoT_finetuned](https://huggingface.co/KathirKs/phi-2_LogiCoT_finetuned) from [KathirKs](https://huggingface.co/KathirKs)
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [phi-2_logicot_finetuned.fp16.gguf](https://huggingface.co/afrideva/phi-2_LogiCoT_finetuned-GGUF/resolve/main/phi-2_logicot_finetuned.fp16.gguf) | fp16 | 5.56 GB |
| [phi-2_logicot_finetuned.q2_k.gguf](https://huggingface.co/afrideva/phi-2_LogiCoT_finetuned-GGUF/resolve/main/phi-2_logicot_finetuned.q2_k.gguf) | q2_k | 1.17 GB |
| [phi-2_logicot_finetuned.q3_k_m.gguf](https://huggingface.co/afrideva/phi-2_LogiCoT_finetuned-GGUF/resolve/main/phi-2_logicot_finetuned.q3_k_m.gguf) | q3_k_m | 1.48 GB |
| [phi-2_logicot_finetuned.q4_k_m.gguf](https://huggingface.co/afrideva/phi-2_LogiCoT_finetuned-GGUF/resolve/main/phi-2_logicot_finetuned.q4_k_m.gguf) | q4_k_m | 1.79 GB |
| [phi-2_logicot_finetuned.q5_k_m.gguf](https://huggingface.co/afrideva/phi-2_LogiCoT_finetuned-GGUF/resolve/main/phi-2_logicot_finetuned.q5_k_m.gguf) | q5_k_m | 2.07 GB |
| [phi-2_logicot_finetuned.q6_k.gguf](https://huggingface.co/afrideva/phi-2_LogiCoT_finetuned-GGUF/resolve/main/phi-2_logicot_finetuned.q6_k.gguf) | q6_k | 2.29 GB |
| [phi-2_logicot_finetuned.q8_0.gguf](https://huggingface.co/afrideva/phi-2_LogiCoT_finetuned-GGUF/resolve/main/phi-2_logicot_finetuned.q8_0.gguf) | q8_0 | 2.96 GB |
## Original Model Card:
I am not the owner of this model's license. Please refer to the original model card for licensing information: [https://huggingface.co/microsoft/phi-2/blob/main/LICENSE]
This model belongs to Microsoft Research.
This is finetuned using just 500 samples LogiCoT (Chain of Thought) prompting dataset.