causal_classifier_base_2025c

This model is a fine-tuned version of klue/roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6414
  • Accuracy: 0.9251

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 168
  • eval_batch_size: 168
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 339 0.4245 0.8417
0.5717 2.0 678 0.3516 0.8701
0.3813 3.0 1017 0.3092 0.8840
0.3813 4.0 1356 0.3161 0.8891
0.2684 5.0 1695 0.3021 0.9103
0.2029 6.0 2034 0.2936 0.9116
0.2029 7.0 2373 0.3112 0.9149
0.1481 8.0 2712 0.3429 0.9120
0.1194 9.0 3051 0.3431 0.9132
0.1194 10.0 3390 0.3844 0.9124
0.095 11.0 3729 0.3938 0.9132
0.0783 12.0 4068 0.4065 0.9116
0.0783 13.0 4407 0.4191 0.9179
0.0652 14.0 4746 0.3936 0.9226
0.0552 15.0 5085 0.4240 0.9204
0.0552 16.0 5424 0.4168 0.9217
0.0496 17.0 5763 0.4421 0.9226
0.0397 18.0 6102 0.4664 0.9149
0.0397 19.0 6441 0.4536 0.9162
0.0377 20.0 6780 0.4750 0.9175
0.0312 21.0 7119 0.5142 0.9145
0.0312 22.0 7458 0.4935 0.9238
0.027 23.0 7797 0.5284 0.9179
0.0253 24.0 8136 0.5294 0.9204
0.0253 25.0 8475 0.4935 0.9179
0.0223 26.0 8814 0.5449 0.9192
0.0202 27.0 9153 0.6081 0.9120
0.0202 28.0 9492 0.5758 0.9166
0.0175 29.0 9831 0.5966 0.9226
0.0166 30.0 10170 0.5709 0.9230
0.0149 31.0 10509 0.5763 0.9179
0.0149 32.0 10848 0.5613 0.9234
0.0131 33.0 11187 0.5542 0.9242
0.0112 34.0 11526 0.6261 0.9149
0.0112 35.0 11865 0.5678 0.9226
0.0099 36.0 12204 0.5906 0.9192
0.0101 37.0 12543 0.5952 0.9213
0.0101 38.0 12882 0.6016 0.9204
0.0081 39.0 13221 0.6165 0.9200
0.0082 40.0 13560 0.5943 0.9187
0.0082 41.0 13899 0.6079 0.9200
0.0057 42.0 14238 0.6279 0.9209
0.006 43.0 14577 0.6562 0.9209
0.006 44.0 14916 0.6350 0.9221
0.0043 45.0 15255 0.6414 0.9251
0.0038 46.0 15594 0.6516 0.9204
0.0038 47.0 15933 0.6512 0.9221
0.0039 48.0 16272 0.6617 0.9221
0.0043 49.0 16611 0.6699 0.9196
0.0043 50.0 16950 0.6736 0.9196

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.4.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.13.3
Downloads last month
129
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support