causal_classifier_base_2025c
This model is a fine-tuned version of klue/roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6414
- Accuracy: 0.9251
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 168
- eval_batch_size: 168
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 339 | 0.4245 | 0.8417 |
0.5717 | 2.0 | 678 | 0.3516 | 0.8701 |
0.3813 | 3.0 | 1017 | 0.3092 | 0.8840 |
0.3813 | 4.0 | 1356 | 0.3161 | 0.8891 |
0.2684 | 5.0 | 1695 | 0.3021 | 0.9103 |
0.2029 | 6.0 | 2034 | 0.2936 | 0.9116 |
0.2029 | 7.0 | 2373 | 0.3112 | 0.9149 |
0.1481 | 8.0 | 2712 | 0.3429 | 0.9120 |
0.1194 | 9.0 | 3051 | 0.3431 | 0.9132 |
0.1194 | 10.0 | 3390 | 0.3844 | 0.9124 |
0.095 | 11.0 | 3729 | 0.3938 | 0.9132 |
0.0783 | 12.0 | 4068 | 0.4065 | 0.9116 |
0.0783 | 13.0 | 4407 | 0.4191 | 0.9179 |
0.0652 | 14.0 | 4746 | 0.3936 | 0.9226 |
0.0552 | 15.0 | 5085 | 0.4240 | 0.9204 |
0.0552 | 16.0 | 5424 | 0.4168 | 0.9217 |
0.0496 | 17.0 | 5763 | 0.4421 | 0.9226 |
0.0397 | 18.0 | 6102 | 0.4664 | 0.9149 |
0.0397 | 19.0 | 6441 | 0.4536 | 0.9162 |
0.0377 | 20.0 | 6780 | 0.4750 | 0.9175 |
0.0312 | 21.0 | 7119 | 0.5142 | 0.9145 |
0.0312 | 22.0 | 7458 | 0.4935 | 0.9238 |
0.027 | 23.0 | 7797 | 0.5284 | 0.9179 |
0.0253 | 24.0 | 8136 | 0.5294 | 0.9204 |
0.0253 | 25.0 | 8475 | 0.4935 | 0.9179 |
0.0223 | 26.0 | 8814 | 0.5449 | 0.9192 |
0.0202 | 27.0 | 9153 | 0.6081 | 0.9120 |
0.0202 | 28.0 | 9492 | 0.5758 | 0.9166 |
0.0175 | 29.0 | 9831 | 0.5966 | 0.9226 |
0.0166 | 30.0 | 10170 | 0.5709 | 0.9230 |
0.0149 | 31.0 | 10509 | 0.5763 | 0.9179 |
0.0149 | 32.0 | 10848 | 0.5613 | 0.9234 |
0.0131 | 33.0 | 11187 | 0.5542 | 0.9242 |
0.0112 | 34.0 | 11526 | 0.6261 | 0.9149 |
0.0112 | 35.0 | 11865 | 0.5678 | 0.9226 |
0.0099 | 36.0 | 12204 | 0.5906 | 0.9192 |
0.0101 | 37.0 | 12543 | 0.5952 | 0.9213 |
0.0101 | 38.0 | 12882 | 0.6016 | 0.9204 |
0.0081 | 39.0 | 13221 | 0.6165 | 0.9200 |
0.0082 | 40.0 | 13560 | 0.5943 | 0.9187 |
0.0082 | 41.0 | 13899 | 0.6079 | 0.9200 |
0.0057 | 42.0 | 14238 | 0.6279 | 0.9209 |
0.006 | 43.0 | 14577 | 0.6562 | 0.9209 |
0.006 | 44.0 | 14916 | 0.6350 | 0.9221 |
0.0043 | 45.0 | 15255 | 0.6414 | 0.9251 |
0.0038 | 46.0 | 15594 | 0.6516 | 0.9204 |
0.0038 | 47.0 | 15933 | 0.6512 | 0.9221 |
0.0039 | 48.0 | 16272 | 0.6617 | 0.9221 |
0.0043 | 49.0 | 16611 | 0.6699 | 0.9196 |
0.0043 | 50.0 | 16950 | 0.6736 | 0.9196 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.13.3
- Downloads last month
- 129
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support