distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5143
- Accuracy: 0.87
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.4594 | 1.0 | 113 | 1.4401 | 0.59 |
0.909 | 2.0 | 226 | 1.0519 | 0.68 |
0.7199 | 3.0 | 339 | 0.9138 | 0.72 |
0.4579 | 4.0 | 452 | 0.7671 | 0.75 |
0.4301 | 5.0 | 565 | 0.5310 | 0.84 |
0.2227 | 6.0 | 678 | 0.5143 | 0.87 |
0.1142 | 7.0 | 791 | 0.5114 | 0.85 |
0.04 | 8.0 | 904 | 0.5380 | 0.87 |
0.0367 | 9.0 | 1017 | 0.5885 | 0.87 |
0.0258 | 10.0 | 1130 | 0.6084 | 0.86 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 162
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for ahk-d/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert