See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3-8B
lora_model_dir: ahmedelgebaly/llama-3.1-8b-squadv2_E1_V2
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: ahmedelgebaly/SciQ_Alpaca
type: alpaca
split: train
- path: ahmedelgebaly/SQuad_2_Alpaca
type: alpaca
split: train
percentage: 0.1 # small replay buffer to avoid forgetting
test_datasets:
- path: ahmedelgebaly/SciQ_Alpaca
type: alpaca
split: validation
dataset_prepared_path:
output_dir: ./outputs/qlora-out
adapter: qlora
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 64 #Before it was 16
lora_dropout: 0.05
lora_target_modules: #Before it was empty
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- up_proj
- down_proj
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: llama-3.1-8b-squadv2_SciQ_e2_v2
wandb_entity:
wandb_watch:
wandb_name: llama-3.1-8b-squadv2-v0_SciQ_e2_v2
wandb_log_model:
hub_model_id: ahmedelgebaly/llama-3.1-8b-squadv2_SciQ_E2_V2
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 2
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: true #Before it was false
bf16: auto
tf32: false
gradient_checkpointing: true
flash_attention: true
warmup_steps: 50 #Before it was 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
pad_token: "<|end_of_text|>"
llama-3.1-8b-squadv2_SciQ_E2_V2
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8990
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0029 | 1 | 2.2993 |
0.8102 | 0.2504 | 85 | 0.9110 |
0.8141 | 0.5007 | 170 | 0.8933 |
0.8189 | 0.7511 | 255 | 0.8846 |
0.8188 | 1.0015 | 340 | 0.8763 |
0.6354 | 1.2496 | 425 | 0.9022 |
0.6568 | 1.5 | 510 | 0.9029 |
0.639 | 1.7504 | 595 | 0.8990 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ahmedelgebaly/llama-3.1-8b-squadv2_SciQ_E2_V2
Base model
meta-llama/Meta-Llama-3-8B