See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3-8B # same model you originally used
peft_model: ahmedelgebaly/llama-3.1-8b-squadv2
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: ahmedelgebaly/SciQ_Alpaca
type: alpaca
split: train
test_datasets:
- path: ahmedelgebaly/SciQ_Alpaca
type: alpaca
split: validation
dataset_prepared_path:
output_dir: ./outputs/qlora-out
adapter: qlora
lora_model_dir:
sequence_len: 2048 # Halves memory usage decreasing from 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
lora_r: 64 # Increased from 32
lora_alpha: 32 # Increased from 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: llama-3.1-8b-squadv2_SciQ_e1_v2
wandb_entity:
wandb_watch:
wandb_name: llama-3.1-8b-squadv2-v0_SciQ_e1_v2
wandb_log_model:
hub_model_id: ahmedelgebaly/llama-3.1-8b-squadv2_SciQ_e1_v2
gradient_accumulation_steps: 32 # Keeps effective batch size=64 (2x32)
micro_batch_size: 2 # Decrreses from 4
num_epochs: 1
optimizer: paged_adamw_32bit
lr_scheduler: cosine_with_restarts # Updated
learning_rate: 0.0001 # Reduced from 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100 # Increased from 10
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: "<|end_of_text|>"
llama-3.1-8b-squadv2_SciQ_e1_v2
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5100
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.8006 | 0.0598 | 1 | 1.8330 |
1.7825 | 0.2393 | 4 | 1.8315 |
1.7629 | 0.4785 | 8 | 1.8140 |
1.6663 | 0.7178 | 12 | 1.7312 |
1.5168 | 0.9570 | 16 | 1.5100 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 18
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ahmedelgebaly/llama-3.1-8b-squadv2_SciQ_e1_v2
Base model
meta-llama/Meta-Llama-3-8B