IT-EMOTION-ANALYZER
This is a model for emotion analysis of italian sentences trained on a translated dataset by Google Translator. It maps sentences & paragraphs with 6 emotions which are:
- 0: sadness
- 1: joy
- 2: love
- 3: anger
- 4: fear
- 5: surprise
Model in action
Using this model becomes easy when you have transformers installed:
pip install -U transformers
Then you can use the model like this:
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
sentences = ["Questa è una frase triste", "Questa è una frase felice", "Questa è una frase di stupore"]
tokenizer = AutoTokenizer.from_pretrained("aiknowyou/it-emotion-analyzer")
model = AutoModelForSequenceClassification.from_pretrained("aiknowyou/it-emotion-analyzer")
emotion_analysis = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
emotion_analysis(sentences)
Obtaining the following result:
[{'label': '0', 'score': 0.9481984972953796},
{'label': '1', 'score': 0.9299975037574768},
{'label': '5', 'score': 0.9543816447257996}]
Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 43095109829
- CO2 Emissions (in grams): 0.4489
Validation Metrics
- Loss: 0.566
- Accuracy: 0.828
- Macro F1: 0.828
- Micro F1: 0.828
- Weighted F1: 0.828
- Macro Precision: 0.828
- Micro Precision: 0.828
- Weighted Precision: 0.828
- Macro Recall: 0.828
- Micro Recall: 0.828
- Weighted Recall: 0.828
- Downloads last month
- 2,569
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.