SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("training")
# Run inference
sentences = [
'<think>\nLet’s think through this step by step\nn = 4\nsp = 75\nt = 36\nspt = 36 / 4 = 9\nop = 75 + 9 = 84\n</think>\n\\boxed{84}',
'<think>\nLet’s think through this step by step\nn = 4\nsp = 75\nt = 36\nspt = t / n = 36 / 4 = 9\nop = sp + spt = 75 + 9 = 84\n</think>\n\\boxed{84}',
"<think>\nLet’s think through this step by step\nLet B be Benedict's house size\nK = 10000 sq ft\nK = 4B + 600\n10000 = 4B + 600\n4B = 9400\nB = 2350 sq ft\n</think>\n\\boxed{2350}",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-devandsts-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | sts-dev | sts-test |
|---|---|---|
| pearson_cosine | 0.8793 | 0.8793 |
| spearman_cosine | 0.8765 | 0.8765 |
Training Details
Training Dataset
csv
- Dataset: csv
- Size: 4,984 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 34 tokens
- mean: 66.41 tokens
- max: 256 tokens
- min: 36 tokens
- mean: 67.03 tokens
- max: 256 tokens
- Samples:
anchor positive
Let’s think through this step by step
ht_hare = 14 inches
ht_camel = 24 × 14 = 336 inches
ht_camel_ft = 336 / 12 = 28 feet
\boxed{28}
Let’s think through this step by step
ht_hare = 14 inches
ht_camel = 24 * 14 = 336 inches
ht_camel_ft = 336 / 12 = 28 feet
\boxed{28}
Let’s think through this step by step
cpb = 5
sp = 90
pmpb = 2
tp = 5 × 5 = 25
tpmp = 5 × 2 = 10
profit = 90 - 25 - 10 = 55
\boxed{55}
Let’s think through this step by step
cp = 5 × 5 = 25
sp = 90
p = sp - cp - (5 × 2) = 90 - 25 - 10 = 55
\boxed{55}
Let’s think through this step by step
Time to iron a blouse = 15 minutes
Time to iron a dress = 20 minutes
Time spent on blouses = 2 hours = 120 minutes
Time spent on dresses = 3 hours = 180 minutes
Number of blouses ironed = 120 / 15 = 8
Number of dresses ironed = 180 / 20 = 9
Total pieces of clothes ironed = 8 + 9 = 17
\boxed{17}
Let’s think through this step by step
Time to iron 1 blouse = 15 minutes
Time to iron 1 dress = 20 minutes
Time spent on blouses = 2 hours = 120 minutes
Time spent on dresses = 3 hours = 180 minutes
Number of blouses ironed = 120 / 15 = 8
Number of dresses ironed = 180 / 20 = 9
Total pieces of clothes ironed = 8 + 9 = 17
\boxed{17} - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
csv
- Dataset: csv
- Size: 4,984 evaluation samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 33 tokens
- mean: 66.68 tokens
- max: 164 tokens
- min: 33 tokens
- mean: 66.71 tokens
- max: 161 tokens
- Samples:
anchor positive
Let’s think through this step by step
sg = 36
sc = 1/4
fl = 1/3
sg_left = sg - (sg × sc) - (sg × (1 - sc) × fl)
sg_left = 36 - (36 × 1/4) - (36 × (1 - 1/4) × 1/3)
sg_left = 36 - 9 - 6
sg_left = 21
\boxed{21}
Let’s think through this step by step
sg = 36
sc = 1/4
fl = 1/3
sg_left = sg - (sg × sc) - (sg × (1 - sc) × fl)
sg_left = 36 - (36 × 1/4) - (36 × (1 - 1/4) × 1/3)
sg_left = 36 - 9 - 6
sg_left = 21
\boxed{21}
Let’s think through this step by step
d1 = 125 miles
d2 = 223 miles
d3 = 493 - (125 + 223)
d3 = 145 miles
\boxed{145}
Let’s think through this step by step
d1 = 125 miles
d2 = 223 miles
d3 = 493 - (125 + 223)
d3 = 145 miles
\boxed{145}
Let’s think through this step by step
Total workdays = 2 weeks × 5 days/week = 10 days
Paid vacation days = 6 days
Unpaid vacation days = 10 - 6 = 4 days
Total pay = 15 × 8 = $120/day
Missed pay = 4 × 120 = $480
\boxed{480}
Let’s think through this step by step
Total workdays = 2 weeks × 5 days/week = 10 days
Paid vacation days = 6 days
Unpaid vacation days = 10 - 6 = 4 days
Total pay = 15 × 8 = $120/day
Missed pay = 4 × 120 = $480
\boxed{480} - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16learning_rate: 2e-05num_train_epochs: 20warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 20max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|---|---|---|---|---|---|
| -1 | -1 | - | - | 0.8671 | - |
| 0.3953 | 100 | 0.0422 | 0.0031 | 0.8701 | - |
| 0.7905 | 200 | 0.0105 | 0.0017 | 0.8727 | - |
| 1.1858 | 300 | 0.0041 | 0.0016 | 0.8728 | - |
| 1.5810 | 400 | 0.0016 | 0.0011 | 0.8730 | - |
| 1.9763 | 500 | 0.0039 | 0.0021 | 0.8731 | - |
| 2.3715 | 600 | 0.0014 | 0.0020 | 0.8741 | - |
| 2.7668 | 700 | 0.0014 | 0.0017 | 0.8744 | - |
| 3.1621 | 800 | 0.0019 | 0.0009 | 0.8742 | - |
| 3.5573 | 900 | 0.0012 | 0.0011 | 0.8754 | - |
| 3.9526 | 1000 | 0.0016 | 0.0015 | 0.8760 | - |
| 4.3478 | 1100 | 0.0021 | 0.0011 | 0.8763 | - |
| 4.7431 | 1200 | 0.0006 | 0.0009 | 0.8753 | - |
| 5.1383 | 1300 | 0.0004 | 0.0009 | 0.8753 | - |
| 5.5336 | 1400 | 0.0008 | 0.0008 | 0.8751 | - |
| 5.9289 | 1500 | 0.0004 | 0.0004 | 0.8743 | - |
| 6.3241 | 1600 | 0.0009 | 0.0008 | 0.8758 | - |
| 6.7194 | 1700 | 0.0005 | 0.0009 | 0.8747 | - |
| 7.1146 | 1800 | 0.0004 | 0.0006 | 0.8742 | - |
| 7.5099 | 1900 | 0.0003 | 0.0010 | 0.8748 | - |
| 7.9051 | 2000 | 0.0006 | 0.0008 | 0.8742 | - |
| 8.3004 | 2100 | 0.0005 | 0.0007 | 0.8744 | - |
| 8.6957 | 2200 | 0.0003 | 0.0006 | 0.8748 | - |
| 9.0909 | 2300 | 0.0005 | 0.0012 | 0.8749 | - |
| 9.4862 | 2400 | 0.0007 | 0.0006 | 0.8762 | - |
| 9.8814 | 2500 | 0.0003 | 0.0009 | 0.8762 | - |
| 10.2767 | 2600 | 0.0004 | 0.0007 | 0.8759 | - |
| 10.6719 | 2700 | 0.0005 | 0.0005 | 0.8760 | - |
| 11.0672 | 2800 | 0.0005 | 0.0007 | 0.8754 | - |
| 11.4625 | 2900 | 0.0002 | 0.0008 | 0.8749 | - |
| 11.8577 | 3000 | 0.0002 | 0.0007 | 0.8749 | - |
| 12.2530 | 3100 | 0.0003 | 0.0007 | 0.8752 | - |
| 12.6482 | 3200 | 0.0004 | 0.0008 | 0.8760 | - |
| 13.0435 | 3300 | 0.0002 | 0.0008 | 0.8767 | - |
| 13.4387 | 3400 | 0.0002 | 0.0007 | 0.8763 | - |
| 13.8340 | 3500 | 0.0002 | 0.0007 | 0.8763 | - |
| 14.2292 | 3600 | 0.0001 | 0.0007 | 0.8764 | - |
| 14.6245 | 3700 | 0.0003 | 0.0006 | 0.8765 | - |
| 15.0198 | 3800 | 0.0002 | 0.0005 | 0.8757 | - |
| 15.4150 | 3900 | 0.0002 | 0.0004 | 0.8760 | - |
| 15.8103 | 4000 | 0.0002 | 0.0005 | 0.8765 | - |
| 16.2055 | 4100 | 0.0002 | 0.0005 | 0.8757 | - |
| 16.6008 | 4200 | 0.0002 | 0.0006 | 0.8758 | - |
| 16.9960 | 4300 | 0.0002 | 0.0006 | 0.8758 | - |
| 17.3913 | 4400 | 0.0001 | 0.0005 | 0.8761 | - |
| 17.7866 | 4500 | 0.0002 | 0.0005 | 0.8765 | - |
| 18.1818 | 4600 | 0.0001 | 0.0005 | 0.8767 | - |
| 18.5771 | 4700 | 0.0004 | 0.0004 | 0.8765 | - |
| 18.9723 | 4800 | 0.0002 | 0.0004 | 0.8765 | - |
| 19.3676 | 4900 | 0.0001 | 0.0004 | 0.8765 | - |
| 19.7628 | 5000 | 0.0001 | 0.0004 | 0.8765 | - |
| -1 | -1 | - | - | - | 0.8765 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.51.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.5.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Model tree for aisuko/training
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Pearson Cosine on sts devself-reported0.879
- Spearman Cosine on sts devself-reported0.876
- Pearson Cosine on sts testself-reported0.879
- Spearman Cosine on sts testself-reported0.876