SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • csv

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("training")
# Run inference
sentences = [
    '<think>\nLet’s think through this step by step\nn = 4\nsp = 75\nt = 36\nspt = 36 / 4 = 9\nop = 75 + 9 = 84\n</think>\n\\boxed{84}',
    '<think>\nLet’s think through this step by step\nn = 4\nsp = 75\nt = 36\nspt = t / n = 36 / 4 = 9\nop = sp + spt = 75 + 9 = 84\n</think>\n\\boxed{84}',
    "<think>\nLet’s think through this step by step\nLet B be Benedict's house size\nK = 10000 sq ft\nK = 4B + 600\n10000 = 4B + 600\n4B = 9400\nB = 2350 sq ft\n</think>\n\\boxed{2350}",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric sts-dev sts-test
pearson_cosine 0.8793 0.8793
spearman_cosine 0.8765 0.8765

Training Details

Training Dataset

csv

  • Dataset: csv
  • Size: 4,984 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 34 tokens
    • mean: 66.41 tokens
    • max: 256 tokens
    • min: 36 tokens
    • mean: 67.03 tokens
    • max: 256 tokens
  • Samples:
    anchor positive

    Let’s think through this step by step
    ht_hare = 14 inches
    ht_camel = 24 × 14 = 336 inches
    ht_camel_ft = 336 / 12 = 28 feet

    \boxed{28}

    Let’s think through this step by step
    ht_hare = 14 inches
    ht_camel = 24 * 14 = 336 inches
    ht_camel_ft = 336 / 12 = 28 feet

    \boxed{28}

    Let’s think through this step by step
    cpb = 5
    sp = 90
    pmpb = 2
    tp = 5 × 5 = 25
    tpmp = 5 × 2 = 10
    profit = 90 - 25 - 10 = 55

    \boxed{55}

    Let’s think through this step by step
    cp = 5 × 5 = 25
    sp = 90
    p = sp - cp - (5 × 2) = 90 - 25 - 10 = 55

    \boxed{55}

    Let’s think through this step by step
    Time to iron a blouse = 15 minutes
    Time to iron a dress = 20 minutes
    Time spent on blouses = 2 hours = 120 minutes
    Time spent on dresses = 3 hours = 180 minutes
    Number of blouses ironed = 120 / 15 = 8
    Number of dresses ironed = 180 / 20 = 9
    Total pieces of clothes ironed = 8 + 9 = 17

    \boxed{17}

    Let’s think through this step by step
    Time to iron 1 blouse = 15 minutes
    Time to iron 1 dress = 20 minutes
    Time spent on blouses = 2 hours = 120 minutes
    Time spent on dresses = 3 hours = 180 minutes
    Number of blouses ironed = 120 / 15 = 8
    Number of dresses ironed = 180 / 20 = 9
    Total pieces of clothes ironed = 8 + 9 = 17

    \boxed{17}
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

csv

  • Dataset: csv
  • Size: 4,984 evaluation samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 33 tokens
    • mean: 66.68 tokens
    • max: 164 tokens
    • min: 33 tokens
    • mean: 66.71 tokens
    • max: 161 tokens
  • Samples:
    anchor positive

    Let’s think through this step by step
    sg = 36
    sc = 1/4
    fl = 1/3
    sg_left = sg - (sg × sc) - (sg × (1 - sc) × fl)
    sg_left = 36 - (36 × 1/4) - (36 × (1 - 1/4) × 1/3)
    sg_left = 36 - 9 - 6
    sg_left = 21

    \boxed{21}

    Let’s think through this step by step
    sg = 36
    sc = 1/4
    fl = 1/3
    sg_left = sg - (sg × sc) - (sg × (1 - sc) × fl)
    sg_left = 36 - (36 × 1/4) - (36 × (1 - 1/4) × 1/3)
    sg_left = 36 - 9 - 6
    sg_left = 21

    \boxed{21}

    Let’s think through this step by step
    d1 = 125 miles
    d2 = 223 miles
    d3 = 493 - (125 + 223)
    d3 = 145 miles

    \boxed{145}

    Let’s think through this step by step
    d1 = 125 miles
    d2 = 223 miles
    d3 = 493 - (125 + 223)
    d3 = 145 miles

    \boxed{145}

    Let’s think through this step by step
    Total workdays = 2 weeks × 5 days/week = 10 days
    Paid vacation days = 6 days
    Unpaid vacation days = 10 - 6 = 4 days
    Total pay = 15 × 8 = $120/day
    Missed pay = 4 × 120 = $480

    \boxed{480}

    Let’s think through this step by step
    Total workdays = 2 weeks × 5 days/week = 10 days
    Paid vacation days = 6 days
    Unpaid vacation days = 10 - 6 = 4 days
    Total pay = 15 × 8 = $120/day
    Missed pay = 4 × 120 = $480

    \boxed{480}
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 20
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 20
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss sts-dev_spearman_cosine sts-test_spearman_cosine
-1 -1 - - 0.8671 -
0.3953 100 0.0422 0.0031 0.8701 -
0.7905 200 0.0105 0.0017 0.8727 -
1.1858 300 0.0041 0.0016 0.8728 -
1.5810 400 0.0016 0.0011 0.8730 -
1.9763 500 0.0039 0.0021 0.8731 -
2.3715 600 0.0014 0.0020 0.8741 -
2.7668 700 0.0014 0.0017 0.8744 -
3.1621 800 0.0019 0.0009 0.8742 -
3.5573 900 0.0012 0.0011 0.8754 -
3.9526 1000 0.0016 0.0015 0.8760 -
4.3478 1100 0.0021 0.0011 0.8763 -
4.7431 1200 0.0006 0.0009 0.8753 -
5.1383 1300 0.0004 0.0009 0.8753 -
5.5336 1400 0.0008 0.0008 0.8751 -
5.9289 1500 0.0004 0.0004 0.8743 -
6.3241 1600 0.0009 0.0008 0.8758 -
6.7194 1700 0.0005 0.0009 0.8747 -
7.1146 1800 0.0004 0.0006 0.8742 -
7.5099 1900 0.0003 0.0010 0.8748 -
7.9051 2000 0.0006 0.0008 0.8742 -
8.3004 2100 0.0005 0.0007 0.8744 -
8.6957 2200 0.0003 0.0006 0.8748 -
9.0909 2300 0.0005 0.0012 0.8749 -
9.4862 2400 0.0007 0.0006 0.8762 -
9.8814 2500 0.0003 0.0009 0.8762 -
10.2767 2600 0.0004 0.0007 0.8759 -
10.6719 2700 0.0005 0.0005 0.8760 -
11.0672 2800 0.0005 0.0007 0.8754 -
11.4625 2900 0.0002 0.0008 0.8749 -
11.8577 3000 0.0002 0.0007 0.8749 -
12.2530 3100 0.0003 0.0007 0.8752 -
12.6482 3200 0.0004 0.0008 0.8760 -
13.0435 3300 0.0002 0.0008 0.8767 -
13.4387 3400 0.0002 0.0007 0.8763 -
13.8340 3500 0.0002 0.0007 0.8763 -
14.2292 3600 0.0001 0.0007 0.8764 -
14.6245 3700 0.0003 0.0006 0.8765 -
15.0198 3800 0.0002 0.0005 0.8757 -
15.4150 3900 0.0002 0.0004 0.8760 -
15.8103 4000 0.0002 0.0005 0.8765 -
16.2055 4100 0.0002 0.0005 0.8757 -
16.6008 4200 0.0002 0.0006 0.8758 -
16.9960 4300 0.0002 0.0006 0.8758 -
17.3913 4400 0.0001 0.0005 0.8761 -
17.7866 4500 0.0002 0.0005 0.8765 -
18.1818 4600 0.0001 0.0005 0.8767 -
18.5771 4700 0.0004 0.0004 0.8765 -
18.9723 4800 0.0002 0.0004 0.8765 -
19.3676 4900 0.0001 0.0004 0.8765 -
19.7628 5000 0.0001 0.0004 0.8765 -
-1 -1 - - - 0.8765

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.51.1
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
7
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for aisuko/training

Finetuned
(560)
this model

Evaluation results