ajd12342's picture
Update README.md
48db720 verified
---
base_model:
- parler-tts/parler-tts-mini-v1
datasets:
- amphion/Emilia-Dataset
language:
- en
library_name: transformers
license: cc-by-nc-sa-4.0
pipeline_tag: text-to-speech
---
# Parler-TTS Mini v1 ft. ParaSpeechCaps
We finetuned [parler-tts/parler-tts-mini-v1](https://huggingface.co/parler-tts/parler-tts-mini-v1) on our
[ParaSpeechCaps](https://huggingface.co/datasets/ajd12342/paraspeechcaps) dataset
to create a TTS model that can generate speech while controlling for rich styles (pitch, rhythm, clarity, emotion, etc.)
with a textual style prompt ('*A male speaker's speech is distinguished by a slurred articulation, delivered at a measured pace in a clear environment.*').
ParaSpeechCaps (PSC) is our large-scale dataset that provides rich style annotations for speech utterances,
supporting 59 style tags covering speaker-level intrinsic style tags and utterance-level situational style tags.
It consists of a human-annotated subset ParaSpeechCaps-Base and a large automatically-annotated subset ParaSpeechCaps-Scaled.
Our novel pipeline combining off-the-shelf text and speech embedders, classifiers and an audio language model allows us to automatically scale rich tag annotations
for such a wide variety of style tags for the first time.
Please take a look at our [paper](https://arxiv.org/abs/2503.04713), our [codebase](https://github.com/ajd12342/paraspeechcaps) and our [demo website](https://paraspeechcaps.github.io/) for more information.
**License:** [CC BY-NC SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)
## Usage
### Installation
This repository has been tested with Python 3.11 (`conda create -n paraspeechcaps python=3.11`), but most other versions should probably work.
```sh
git clone https://github.com/ajd12342/paraspeechcaps.git
cd paraspeechcaps/model/parler-tts
pip install -e .[train]
```
### Running Inference
```py
import torch
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer
import soundfile as sf
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model_name = "ajd12342/parler-tts-mini-v1-paraspeechcaps"
guidance_scale = 1.5
model = ParlerTTSForConditionalGeneration.from_pretrained(model_name).to(device)
description_tokenizer = AutoTokenizer.from_pretrained(model_name)
transcription_tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
input_description = "In a clear environment, a male voice speaks with a sad tone.".replace('\n', ' ').rstrip()
input_transcription = "Was that your landlord?".replace('\n', ' ').rstrip()
input_description_tokenized = description_tokenizer(input_description, return_tensors="pt").to(model.device)
input_transcription_tokenized = transcription_tokenizer(input_transcription, return_tensors="pt").to(model.device)
generation = model.generate(input_ids=input_description_tokenized.input_ids, prompt_input_ids=input_transcription_tokenized.input_ids, guidance_scale=guidance_scale)
audio_arr = generation.cpu().numpy().squeeze()
sf.write("output.wav", audio_arr, model.config.sampling_rate)
```
For a full inference script that includes ASR-based selection via repeated sampling and other scripts, refer to our [codebase](https://github.com/ajd12342/paraspeechcaps).
## Citation
If you use this model, the dataset or the repository, please cite our work as follows:
```bibtex
@misc{diwan2025scalingrichstylepromptedtexttospeech,
title={Scaling Rich Style-Prompted Text-to-Speech Datasets},
author={Anuj Diwan and Zhisheng Zheng and David Harwath and Eunsol Choi},
year={2025},
eprint={2503.04713},
archivePrefix={arXiv},
primaryClass={eess.AS},
url={https://arxiv.org/abs/2503.04713},
}
```