VIT_fourclass_Jun25

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0938
  • Validation Loss: 2.3960
  • Train Accuracy: 0.51
  • Epoch: 14

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'SGD', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': np.float32(0.01), 'momentum': 0.0, 'nesterov': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
0.9196 1.2060 0.38 0
0.3792 1.4807 0.48 1
0.2729 1.7396 0.45 2
0.2006 2.4379 0.29 3
0.1996 2.4795 0.36 4
0.1734 2.7916 0.35 5
0.1860 4.1270 0.09 6
0.1490 2.7235 0.37 7
0.1077 3.5380 0.26 8
0.1173 2.7697 0.42 9
0.1526 2.7868 0.42 10
0.1161 3.1132 0.36 11
0.1093 3.5738 0.33 12
0.0884 3.1227 0.37 13
0.0938 2.3960 0.51 14

Framework versions

  • Transformers 4.52.4
  • TensorFlow 2.18.0
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
14
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for akar49/VIT_fourclass_Jun25

Finetuned
(2282)
this model