VIT_fourclass_Jun25
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0938
- Validation Loss: 2.3960
- Train Accuracy: 0.51
- Epoch: 14
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'SGD', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': np.float32(0.01), 'momentum': 0.0, 'nesterov': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Accuracy | Epoch |
---|---|---|---|
0.9196 | 1.2060 | 0.38 | 0 |
0.3792 | 1.4807 | 0.48 | 1 |
0.2729 | 1.7396 | 0.45 | 2 |
0.2006 | 2.4379 | 0.29 | 3 |
0.1996 | 2.4795 | 0.36 | 4 |
0.1734 | 2.7916 | 0.35 | 5 |
0.1860 | 4.1270 | 0.09 | 6 |
0.1490 | 2.7235 | 0.37 | 7 |
0.1077 | 3.5380 | 0.26 | 8 |
0.1173 | 2.7697 | 0.42 | 9 |
0.1526 | 2.7868 | 0.42 | 10 |
0.1161 | 3.1132 | 0.36 | 11 |
0.1093 | 3.5738 | 0.33 | 12 |
0.0884 | 3.1227 | 0.37 | 13 |
0.0938 | 2.3960 | 0.51 | 14 |
Framework versions
- Transformers 4.52.4
- TensorFlow 2.18.0
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 14
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for akar49/VIT_fourclass_Jun25
Base model
google/vit-base-patch16-224-in21k