ModernBERT-base trained on GooAQ
This is a Cross Encoder model finetuned from answerdotai/ModernBERT-base using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: answerdotai/ModernBERT-base
- Maximum Sequence Length: 8192 tokens
- Number of Output Labels: 1 label
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the ๐ค Hub
model = CrossEncoder("akr2002/reranker-ModernBERT-base-gooaq-bce")
# Get scores for pairs of texts
pairs = [
['how do you find mass?', "Divide the object's weight by the acceleration of gravity to find the mass. You'll need to convert the weight units to Newtons. For example, 1 kg = 9.807 N. If you're measuring the mass of an object on Earth, divide the weight in Newtons by the acceleration of gravity on Earth (9.8 meters/second2) to get mass."],
['how do you find mass?', "In general use, 'High Mass' means a full ceremonial Mass, most likely with music, and also with incense if they're particularly traditional. ... Incense is used quite a lot. Low Mass in the traditional rite is celebrated by one priest, and usually only one or two altar servers."],
['how do you find mass?', 'A neutron has a slightly larger mass than the proton. These are often given in terms of an atomic mass unit, where one atomic mass unit (u) is defined as 1/12th the mass of a carbon-12 atom. You can use that to prove that a mass of 1 u is equivalent to an energy of 931.5 MeV.'],
['how do you find mass?', 'Mass is the amount of matter in a body, normally measured in grams or kilograms etc. Weight is a force that pulls on a mass and is measured in Newtons. ... Density basically means how much mass is occupied in a specific volume or space. Different materials of the same size may have different masses because of its density.'],
['how do you find mass?', 'Receiver โ Mass communication is the transmission of the message to a large number of recipients. This mass of receivers, are often called as mass audience. The Mass audience is large, heterogenous and anonymous in nature. The receivers are scattered across a given village, state or country.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'how do you find mass?',
[
"Divide the object's weight by the acceleration of gravity to find the mass. You'll need to convert the weight units to Newtons. For example, 1 kg = 9.807 N. If you're measuring the mass of an object on Earth, divide the weight in Newtons by the acceleration of gravity on Earth (9.8 meters/second2) to get mass.",
"In general use, 'High Mass' means a full ceremonial Mass, most likely with music, and also with incense if they're particularly traditional. ... Incense is used quite a lot. Low Mass in the traditional rite is celebrated by one priest, and usually only one or two altar servers.",
'A neutron has a slightly larger mass than the proton. These are often given in terms of an atomic mass unit, where one atomic mass unit (u) is defined as 1/12th the mass of a carbon-12 atom. You can use that to prove that a mass of 1 u is equivalent to an energy of 931.5 MeV.',
'Mass is the amount of matter in a body, normally measured in grams or kilograms etc. Weight is a force that pulls on a mass and is measured in Newtons. ... Density basically means how much mass is occupied in a specific volume or space. Different materials of the same size may have different masses because of its density.',
'Receiver โ Mass communication is the transmission of the message to a large number of recipients. This mass of receivers, are often called as mass audience. The Mass audience is large, heterogenous and anonymous in nature. The receivers are scattered across a given village, state or country.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Reranking
- Dataset:
gooaq-dev
- Evaluated with
CrossEncoderRerankingEvaluator
with these parameters:{ "at_k": 10, "always_rerank_positives": false }
Metric | Value |
---|---|
map | 0.7258 (+0.1946) |
mrr@10 | 0.7245 (+0.2005) |
ndcg@10 | 0.7686 (+0.1774) |
Cross Encoder Reranking
- Datasets:
NanoMSMARCO_R100
,NanoNFCorpus_R100
andNanoNQ_R100
- Evaluated with
CrossEncoderRerankingEvaluator
with these parameters:{ "at_k": 10, "always_rerank_positives": true }
Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
---|---|---|---|
map | 0.4807 (-0.0089) | 0.3866 (+0.1256) | 0.5595 (+0.1399) |
mrr@10 | 0.4689 (-0.0086) | 0.6058 (+0.1060) | 0.5752 (+0.1485) |
ndcg@10 | 0.5499 (+0.0095) | 0.4233 (+0.0982) | 0.6191 (+0.1184) |
Cross Encoder Nano BEIR
- Dataset:
NanoBEIR_R100_mean
- Evaluated with
CrossEncoderNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "rerank_k": 100, "at_k": 10, "always_rerank_positives": true }
Metric | Value |
---|---|
map | 0.4756 (+0.0855) |
mrr@10 | 0.5500 (+0.0820) |
ndcg@10 | 0.5308 (+0.0754) |
Training Details
Training Dataset
Unnamed Dataset
- Size: 578,402 training samples
- Columns:
question
,answer
, andlabel
- Approximate statistics based on the first 1000 samples:
question answer label type string string int details - min: 17 characters
- mean: 44.75 characters
- max: 84 characters
- min: 54 characters
- mean: 252.51 characters
- max: 388 characters
- 0: ~83.00%
- 1: ~17.00%
- Samples:
question answer label how do you find mass?
Divide the object's weight by the acceleration of gravity to find the mass. You'll need to convert the weight units to Newtons. For example, 1 kg = 9.807 N. If you're measuring the mass of an object on Earth, divide the weight in Newtons by the acceleration of gravity on Earth (9.8 meters/second2) to get mass.
1
how do you find mass?
In general use, 'High Mass' means a full ceremonial Mass, most likely with music, and also with incense if they're particularly traditional. ... Incense is used quite a lot. Low Mass in the traditional rite is celebrated by one priest, and usually only one or two altar servers.
0
how do you find mass?
A neutron has a slightly larger mass than the proton. These are often given in terms of an atomic mass unit, where one atomic mass unit (u) is defined as 1/12th the mass of a carbon-12 atom. You can use that to prove that a mass of 1 u is equivalent to an energy of 931.5 MeV.
0
- Loss:
BinaryCrossEntropyLoss
with these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": 5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1seed
: 12bf16
: Truedataloader_num_workers
: 4load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 12data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | gooaq-dev_ndcg@10 | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
---|---|---|---|---|---|---|---|
-1 | -1 | - | 0.1474 (-0.4438) | 0.0356 (-0.5048) | 0.2344 (-0.0907) | 0.0268 (-0.4739) | 0.0989 (-0.3564) |
0.0000 | 1 | 1.1353 | - | - | - | - | - |
0.0277 | 1000 | 1.1797 | - | - | - | - | - |
0.0553 | 2000 | 0.8539 | - | - | - | - | - |
0.0830 | 3000 | 0.7438 | - | - | - | - | - |
0.1106 | 4000 | 0.7296 | 0.7119 (+0.1206) | 0.5700 (+0.0296) | 0.3410 (+0.0160) | 0.6012 (+0.1005) | 0.5041 (+0.0487) |
0.1383 | 5000 | 0.6705 | - | - | - | - | - |
0.1660 | 6000 | 0.6624 | - | - | - | - | - |
0.1936 | 7000 | 0.6685 | - | - | - | - | - |
0.2213 | 8000 | 0.6305 | 0.7328 (+0.1415) | 0.5504 (+0.0099) | 0.4056 (+0.0805) | 0.6947 (+0.1941) | 0.5502 (+0.0948) |
0.2490 | 9000 | 0.6353 | - | - | - | - | - |
0.2766 | 10000 | 0.6118 | - | - | - | - | - |
0.3043 | 11000 | 0.6097 | - | - | - | - | - |
0.3319 | 12000 | 0.6003 | 0.7423 (+0.1510) | 0.5817 (+0.0413) | 0.3817 (+0.0566) | 0.6152 (+0.1145) | 0.5262 (+0.0708) |
0.3596 | 13000 | 0.5826 | - | - | - | - | - |
0.3873 | 14000 | 0.5935 | - | - | - | - | - |
0.4149 | 15000 | 0.5826 | - | - | - | - | - |
0.4426 | 16000 | 0.5723 | 0.7557 (+0.1645) | 0.5453 (+0.0049) | 0.4029 (+0.0779) | 0.6260 (+0.1253) | 0.5247 (+0.0693) |
0.4702 | 17000 | 0.582 | - | - | - | - | - |
0.4979 | 18000 | 0.5631 | - | - | - | - | - |
0.5256 | 19000 | 0.5705 | - | - | - | - | - |
0.5532 | 20000 | 0.544 | 0.7604 (+0.1692) | 0.5636 (+0.0232) | 0.4112 (+0.0862) | 0.6260 (+0.1253) | 0.5336 (+0.0782) |
0.5809 | 21000 | 0.5289 | - | - | - | - | - |
0.6086 | 22000 | 0.5431 | - | - | - | - | - |
0.6362 | 23000 | 0.5449 | - | - | - | - | - |
0.6639 | 24000 | 0.5338 | 0.7608 (+0.1696) | 0.5384 (-0.0020) | 0.4327 (+0.1077) | 0.5906 (+0.0899) | 0.5206 (+0.0652) |
0.6915 | 25000 | 0.5401 | - | - | - | - | - |
0.7192 | 26000 | 0.5535 | - | - | - | - | - |
0.7469 | 27000 | 0.5353 | - | - | - | - | - |
0.7745 | 28000 | 0.5157 | 0.7635 (+0.1723) | 0.5217 (-0.0188) | 0.4171 (+0.0921) | 0.5543 (+0.0537) | 0.4977 (+0.0423) |
0.8022 | 29000 | 0.5153 | - | - | - | - | - |
0.8299 | 30000 | 0.5122 | - | - | - | - | - |
0.8575 | 31000 | 0.5108 | - | - | - | - | - |
0.8852 | 32000 | 0.5303 | 0.7685 (+0.1773) | 0.5538 (+0.0134) | 0.4147 (+0.0897) | 0.6155 (+0.1149) | 0.5280 (+0.0727) |
0.9128 | 33000 | 0.5363 | - | - | - | - | - |
0.9405 | 34000 | 0.4996 | - | - | - | - | - |
0.9682 | 35000 | 0.5193 | - | - | - | - | - |
0.9958 | 36000 | 0.4995 | 0.7686 (+0.1774) | 0.5499 (+0.0095) | 0.4233 (+0.0982) | 0.6191 (+0.1184) | 0.5308 (+0.0754) |
-1 | -1 | - | 0.7686 (+0.1774) | 0.5499 (+0.0095) | 0.4233 (+0.0982) | 0.6191 (+0.1184) | 0.5308 (+0.0754) |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.7
- Sentence Transformers: 4.0.1
- Transformers: 4.50.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The HF Inference API does not support text-ranking models for sentence-transformers
library.
Model tree for akr2002/reranker-ModernBERT-base-gooaq-bce
Base model
answerdotai/ModernBERT-baseEvaluation results
- Map on gooaq devself-reported0.726
- Mrr@10 on gooaq devself-reported0.725
- Ndcg@10 on gooaq devself-reported0.769
- Map on NanoMSMARCO R100self-reported0.481
- Mrr@10 on NanoMSMARCO R100self-reported0.469
- Ndcg@10 on NanoMSMARCO R100self-reported0.550
- Map on NanoNFCorpus R100self-reported0.387
- Mrr@10 on NanoNFCorpus R100self-reported0.606
- Ndcg@10 on NanoNFCorpus R100self-reported0.423
- Map on NanoNQ R100self-reported0.559