SuperKart Sales Forecasting Model
This is a Random Forest Regressor model trained to predict product sales at SuperKart stores.
Model Details
- Model Type: Random Forest Regressor
- Task: Regression (Sales Forecasting)
- Training Data: SuperKart historical sales data (8,763 records)
- Test R² Score: 0.9319
- Test RMSE: $278.68
Best Hyperparameters
- n_estimators: 200
- max_depth: None
- min_samples_split: 5
- min_samples_leaf: 2
Features
The model uses the following features:
- Product_Weight
- Product_Sugar_Content
- Product_Allocated_Area
- Product_Type
- Product_MRP
- Store_Size
- Store_Location_City_Type
- Store_Type
- Store_Age
- Price_Category
Usage
import joblib
import pandas as pd
# Load model
model = joblib.load('best_model.pkl')
# Load label encoders
label_encoders = joblib.load('label_encoders.pkl')
# Make predictions
predictions = model.predict(X_test)
Performance Comparison
| Model | Test R² Score | Test RMSE |
|---|---|---|
| Random Forest | 0.9319 | $278.68 |
| XGBoost | 0.9314 | $279.69 |
| Gradient Boosting | 0.9290 | $284.58 |
Training Details
- Train-Test Split: 80-20
- Cross-Validation: 3-fold
- Evaluation Metrics: RMSE, MAE, R²
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support