SuperKart Sales Forecasting Model

This is a Random Forest Regressor model trained to predict product sales at SuperKart stores.

Model Details

  • Model Type: Random Forest Regressor
  • Task: Regression (Sales Forecasting)
  • Training Data: SuperKart historical sales data (8,763 records)
  • Test R² Score: 0.9319
  • Test RMSE: $278.68

Best Hyperparameters

  • n_estimators: 200
  • max_depth: None
  • min_samples_split: 5
  • min_samples_leaf: 2

Features

The model uses the following features:

  • Product_Weight
  • Product_Sugar_Content
  • Product_Allocated_Area
  • Product_Type
  • Product_MRP
  • Store_Size
  • Store_Location_City_Type
  • Store_Type
  • Store_Age
  • Price_Category

Usage

import joblib
import pandas as pd

# Load model
model = joblib.load('best_model.pkl')

# Load label encoders
label_encoders = joblib.load('label_encoders.pkl')

# Make predictions
predictions = model.predict(X_test)

Performance Comparison

Model Test R² Score Test RMSE
Random Forest 0.9319 $278.68
XGBoost 0.9314 $279.69
Gradient Boosting 0.9290 $284.58

Training Details

  • Train-Test Split: 80-20
  • Cross-Validation: 3-fold
  • Evaluation Metrics: RMSE, MAE, R²
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Space using aksace/superkart-sales-forecasting-model 1