SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-base-en-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("albertus-sussex/veriscrape-book-test-sbert-bs128_lr0.0002_ep3_euclidean_snTrue_spFalse_hn1_spl100")
# Run inference
sentences = [
'Fortress Press',
'Sleeping Bear Pr',
'The Promise of Security, Booklet',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9936 |
Silhouette
- Evaluated with
veriscrape.training.SilhouetteEvaluator
Metric | Value |
---|---|
silhouette_cosine | 0.9288 |
silhouette_euclidean | 0.8143 |
Triplet
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 1.0 |
Silhouette
- Evaluated with
veriscrape.training.SilhouetteEvaluator
Metric | Value |
---|---|
silhouette_cosine | 0.9387 |
silhouette_euclidean | 0.8199 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,192 training samples
- Columns:
anchor
,positive
,negative
,pos_attr_name
, andneg_attr_name
- Approximate statistics based on the first 1000 samples:
anchor positive negative pos_attr_name neg_attr_name type string string string string string details - min: 3 tokens
- mean: 7.24 tokens
- max: 41 tokens
- min: 3 tokens
- mean: 7.05 tokens
- max: 47 tokens
- min: 3 tokens
- mean: 6.93 tokens
- max: 23 tokens
- min: 3 tokens
- mean: 3.81 tokens
- max: 5 tokens
- min: 3 tokens
- mean: 3.79 tokens
- max: 5 tokens
- Samples:
anchor positive negative pos_attr_name neg_attr_name 14/10/2010
03/01/2011
Evaluation
publication_date
title
08/15/2009
May 19, 2000
Daily Express
publication_date
author
10/01/1998
13/05/2010
The Time Machine: An Invention
publication_date
title
- Loss:
veriscrape.training.AttributeTripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Evaluation Dataset
Unnamed Dataset
- Size: 466 evaluation samples
- Columns:
anchor
,positive
,negative
,pos_attr_name
, andneg_attr_name
- Approximate statistics based on the first 466 samples:
anchor positive negative pos_attr_name neg_attr_name type string string string string string details - min: 3 tokens
- mean: 7.15 tokens
- max: 25 tokens
- min: 3 tokens
- mean: 7.17 tokens
- max: 47 tokens
- min: 3 tokens
- mean: 7.33 tokens
- max: 21 tokens
- min: 3 tokens
- mean: 3.81 tokens
- max: 5 tokens
- min: 3 tokens
- mean: 3.77 tokens
- max: 5 tokens
- Samples:
anchor positive negative pos_attr_name neg_attr_name Pierre Dukan
Charlotte Brontรซ
25/11/2008
author
publication_date
25/11/2008
29/10/2009
Speak
publication_date
publisher
Arrow Books Ltd
Pocket Books
Oliver Bowden
publisher
author
- Loss:
veriscrape.training.AttributeTripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 0.0002warmup_ratio
: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0002weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | cosine_accuracy | silhouette_cosine |
---|---|---|---|---|---|
-1 | -1 | - | - | 0.4721 | 0.1816 |
1.0 | 33 | 0.9204 | 0.2282 | 0.9871 | 0.8856 |
2.0 | 66 | 0.0747 | 0.1123 | 0.9914 | 0.8861 |
3.0 | 99 | 0.0279 | 0.1073 | 0.9936 | 0.9288 |
-1 | -1 | - | - | 1.0 | 0.9387 |
Framework Versions
- Python: 3.10.16
- Sentence Transformers: 3.4.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.5.2
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
AttributeTripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for albertus-sussex/veriscrape-book-test-sbert-bs128_lr0.0002_ep3_euclidean_snTrue_spFalse_hn1_spl100
Base model
Alibaba-NLP/gte-base-en-v1.5Evaluation results
- Cosine Accuracy on Unknownself-reported0.994
- Cosine Accuracy on Unknownself-reported1.000
- Silhouette Cosine on Unknownself-reported0.929
- Silhouette Euclidean on Unknownself-reported0.814
- Silhouette Cosine on Unknownself-reported0.939
- Silhouette Euclidean on Unknownself-reported0.820