metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:84524
- loss:AttributeTripletLoss
base_model: Alibaba-NLP/gte-base-en-v1.5
widget:
- source_sentence: Don Piper
sentences:
- Tommy Nelson
- Kate Walbert
- publisher
- author
- source_sentence: The Luxe
sentences:
- '1999'
- publication_date
- title
- 'Critical Care, Mercy Hospital Series #1'
- source_sentence: Bram Stoker
sentences:
- author
- Michael J. Pangio
- '9781598871012'
- isbn_13
- source_sentence: '9780385340557'
sentences:
- BBC Books
- '9780399208539'
- author
- isbn_13
- source_sentence: Midnight
sentences:
- The Bone Parade
- 12/01/2005
- publication_date
- title
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- silhouette_cosine
- silhouette_euclidean
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
results:
- task:
type: triplet
name: Triplet
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.9933986663818359
name: Cosine Accuracy
- type: cosine_accuracy
value: 0.9953047037124634
name: Cosine Accuracy
- task:
type: silhouette
name: Silhouette
dataset:
name: Unknown
type: unknown
metrics:
- type: silhouette_cosine
value: 0.8820315599441528
name: Silhouette Cosine
- type: silhouette_euclidean
value: 0.7902207374572754
name: Silhouette Euclidean
- type: silhouette_cosine
value: 0.8861660361289978
name: Silhouette Cosine
- type: silhouette_euclidean
value: 0.794360339641571
name: Silhouette Euclidean
SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-base-en-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("albertus-sussex/veriscrape-book-test-sbert-bs128_lr5e-05_ep3_euclidean_snTrue_spFalse_hn1")
sentences = [
'Midnight',
'The Bone Parade',
'12/01/2005',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Triplet
Metric |
Value |
cosine_accuracy |
0.9934 |
Silhouette
- Evaluated with
veriscrape.training.SilhouetteEvaluator
Metric |
Value |
silhouette_cosine |
0.882 |
silhouette_euclidean |
0.7902 |
Triplet
Metric |
Value |
cosine_accuracy |
0.9953 |
Silhouette
- Evaluated with
veriscrape.training.SilhouetteEvaluator
Metric |
Value |
silhouette_cosine |
0.8862 |
silhouette_euclidean |
0.7944 |
Training Details
Training Dataset
Unnamed Dataset
Evaluation Dataset
Unnamed Dataset
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 128
per_device_eval_batch_size
: 128
warmup_ratio
: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 128
per_device_eval_batch_size
: 128
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 3
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
prompts
: None
batch_sampler
: batch_sampler
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
Validation Loss |
cosine_accuracy |
silhouette_cosine |
-1 |
-1 |
- |
- |
0.4284 |
0.1492 |
1.0 |
661 |
0.4554 |
0.1438 |
0.9898 |
0.8308 |
2.0 |
1322 |
0.045 |
0.1377 |
0.9930 |
0.8744 |
3.0 |
1983 |
0.0195 |
0.1509 |
0.9934 |
0.8820 |
-1 |
-1 |
- |
- |
0.9953 |
0.8862 |
Framework Versions
- Python: 3.10.16
- Sentence Transformers: 3.4.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.5.2
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
AttributeTripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}