metadata
			tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:8208
  - loss:TripletLoss
base_model: Alibaba-NLP/gte-base-en-v1.5
widget:
  - source_sentence: Vivitar ViviCam 7028 7 Megapixel Compact Camera-7.45 mm
    sentences:
      - model
      - >-
        Olympus Stylus 5010 14 Megapixel Compact Camera - 4.70 mm-23.50 mm -
        Titanium
      - manufacturer
      - Vivitar Corporation
  - source_sentence: Canon, Inc
    sentences:
      - model
      - ': Nikon'
      - manufacturer
      - Lumix DMC-FP1 Point & Shoot Digital Camera
  - source_sentence: Panasonic
    sentences:
      - model
      - FUJI
      - manufacturer
      - Panasonic Lumix DMC-FX37 Point & Shoot Digital Camera - White
  - source_sentence: $299.99
    sentences:
      - SONY
      - price
      - manufacturer
      - $187.99
  - source_sentence: CANON
    sentences:
      - $599.00
      - Sakar International, Inc
      - price
      - manufacturer
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - silhouette_cosine
  - silhouette_euclidean
model-index:
  - name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy
            value: 1
            name: Cosine Accuracy
          - type: cosine_accuracy
            value: 1
            name: Cosine Accuracy
      - task:
          type: silhouette
          name: Silhouette
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: silhouette_cosine
            value: 0.9838829636573792
            name: Silhouette Cosine
          - type: silhouette_euclidean
            value: 0.8829338550567627
            name: Silhouette Euclidean
          - type: silhouette_cosine
            value: 0.983816385269165
            name: Silhouette Cosine
          - type: silhouette_euclidean
            value: 0.8831353187561035
            name: Silhouette Euclidean
	
		
	
	
		SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
	
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
	
		
	
	
		Model Details
	
	
		
	
	
		Model Description
	
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-base-en-v1.5 
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
	
		
	
	
		Model Sources
	
	
		
	
	
		Full Model Architecture
	
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
	
		
	
	
		Usage
	
	
		
	
	
		Direct Usage (Sentence Transformers)
	
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("albertus-sussex/veriscrape-sbert-camera-reference_8_to_verify_2-fold-2")
sentences = [
    'CANON',
    'Sakar International, Inc',
    '$599.00',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
	
		
	
	
		Evaluation
	
	
		
	
	
		Metrics
	
	
		
	
	
		Triplet
	
	
		
| Metric | Value | 
		
| cosine_accuracy | 1.0 | 
	
 
	
		
	
	
		Silhouette
	
- Evaluated with veriscrape.training.SilhouetteEvaluator
	
		
| Metric | Value | 
		
| silhouette_cosine | 0.9839 | 
| silhouette_euclidean | 0.8829 | 
	
 
	
		
	
	
		Triplet
	
	
		
| Metric | Value | 
		
| cosine_accuracy | 1.0 | 
	
 
	
		
	
	
		Silhouette
	
- Evaluated with veriscrape.training.SilhouetteEvaluator
	
		
| Metric | Value | 
		
| silhouette_cosine | 0.9838 | 
| silhouette_euclidean | 0.8831 | 
	
 
	
		
	
	
		Training Details
	
	
		
	
	
		Training Dataset
	
	
		
	
	
		Unnamed Dataset
	
	
		
	
	
		Evaluation Dataset
	
	
		
	
	
		Unnamed Dataset
	
	
		
	
	
		Training Hyperparameters
	
	
		
	
	
		Non-Default Hyperparameters
	
- eval_strategy: epoch
- per_device_train_batch_size: 128
- per_device_eval_batch_size: 128
- num_train_epochs: 5
- warmup_ratio: 0.1
	
		
	
	
		All Hyperparameters
	
Click to expand
- overwrite_output_dir: False
- do_predict: False
- eval_strategy: epoch
- prediction_loss_only: True
- per_device_train_batch_size: 128
- per_device_eval_batch_size: 128
- per_gpu_train_batch_size: None
- per_gpu_eval_batch_size: None
- gradient_accumulation_steps: 1
- eval_accumulation_steps: None
- torch_empty_cache_steps: None
- learning_rate: 5e-05
- weight_decay: 0.0
- adam_beta1: 0.9
- adam_beta2: 0.999
- adam_epsilon: 1e-08
- max_grad_norm: 1.0
- num_train_epochs: 5
- max_steps: -1
- lr_scheduler_type: linear
- lr_scheduler_kwargs: {}
- warmup_ratio: 0.1
- warmup_steps: 0
- log_level: passive
- log_level_replica: warning
- log_on_each_node: True
- logging_nan_inf_filter: True
- save_safetensors: True
- save_on_each_node: False
- save_only_model: False
- restore_callback_states_from_checkpoint: False
- no_cuda: False
- use_cpu: False
- use_mps_device: False
- seed: 42
- data_seed: None
- jit_mode_eval: False
- use_ipex: False
- bf16: False
- fp16: False
- fp16_opt_level: O1
- half_precision_backend: auto
- bf16_full_eval: False
- fp16_full_eval: False
- tf32: None
- local_rank: 0
- ddp_backend: None
- tpu_num_cores: None
- tpu_metrics_debug: False
- debug: []
- dataloader_drop_last: False
- dataloader_num_workers: 0
- dataloader_prefetch_factor: None
- past_index: -1
- disable_tqdm: False
- remove_unused_columns: True
- label_names: None
- load_best_model_at_end: False
- ignore_data_skip: False
- fsdp: []
- fsdp_min_num_params: 0
- fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- fsdp_transformer_layer_cls_to_wrap: None
- accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- deepspeed: None
- label_smoothing_factor: 0.0
- optim: adamw_torch
- optim_args: None
- adafactor: False
- group_by_length: False
- length_column_name: length
- ddp_find_unused_parameters: None
- ddp_bucket_cap_mb: None
- ddp_broadcast_buffers: False
- dataloader_pin_memory: True
- dataloader_persistent_workers: False
- skip_memory_metrics: True
- use_legacy_prediction_loop: False
- push_to_hub: False
- resume_from_checkpoint: None
- hub_model_id: None
- hub_strategy: every_save
- hub_private_repo: False
- hub_always_push: False
- gradient_checkpointing: False
- gradient_checkpointing_kwargs: None
- include_inputs_for_metrics: False
- eval_do_concat_batches: True
- fp16_backend: auto
- push_to_hub_model_id: None
- push_to_hub_organization: None
- mp_parameters:
- auto_find_batch_size: False
- full_determinism: False
- torchdynamo: None
- ray_scope: last
- ddp_timeout: 1800
- torch_compile: False
- torch_compile_backend: None
- torch_compile_mode: None
- dispatch_batches: None
- split_batches: None
- include_tokens_per_second: False
- include_num_input_tokens_seen: False
- neftune_noise_alpha: None
- optim_target_modules: None
- batch_eval_metrics: False
- eval_on_start: False
- use_liger_kernel: False
- eval_use_gather_object: False
- prompts: None
- batch_sampler: batch_sampler
- multi_dataset_batch_sampler: proportional
	
		
	
	
		Training Logs
	
	
		
| Epoch | Step | Training Loss | Validation Loss | cosine_accuracy | silhouette_cosine | 
		
| -1 | -1 | - | - | 0.8015 | 0.3632 | 
| 1.0 | 65 | 0.266 | 0.0 | 1.0 | 0.9837 | 
| 2.0 | 130 | 0.0 | 0.0 | 1.0 | 0.9839 | 
| 3.0 | 195 | 0.0 | 0.0 | 1.0 | 0.9839 | 
| 4.0 | 260 | 0.0 | 0.0 | 1.0 | 0.9839 | 
| 5.0 | 325 | 0.0 | 0.0 | 1.0 | 0.9839 | 
| -1 | -1 | - | - | 1.0 | 0.9838 | 
	
 
	
		
	
	
		Framework Versions
	
- Python: 3.10.16
- Sentence Transformers: 4.0.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.5.2
- Datasets: 3.1.0
- Tokenizers: 0.20.3
	
		
	
	
		Citation
	
	
		
	
	
		BibTeX
	
	
		
	
	
		Sentence Transformers
	
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
	
		
	
	
		TripletLoss
	
@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}