SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Model Labels
Label |
Examples |
schedule_a_visit |
- 'I’d like to schedule a visit'
- 'Je voudrais planifier une visite'
- 'Puis-je programmer une visite?'
|
check_availability |
- 'Est-ce encore disponible?'
- 'Is this still available?'
- 'Can I check availability?'
|
amenities_and_features |
- 'Parlez-moi des fonctionnalités du bien'
- 'Tell me the features of the property'
- 'Quels sont les équipements disponibles?'
|
payment_plan |
- 'Pouvez-vous me parler du plan de paiement?'
- 'Quels sont les modes de paiement disponibles?'
- 'What are the payment options?'
|
reservation_process |
- 'Tell me about the reservation process'
- 'Pouvez-vous m’expliquer le processus de réservation?'
- 'Comment puis-je faire une réservation?'
|
location_details |
- 'Où est-ce situé?'
- 'Can you tell me the location details?'
- 'What’s the address?'
|
pricing_details |
- 'How much does it cost?'
- 'Tell me the pricing details'
- 'Combien ça coûte?'
|
option_process |
- 'Tell me about the option process'
- 'Parlez-moi du processus des options'
- 'Quels sont mes choix?'
|
information_on_projects |
- 'Can you give me information about the projects?'
- 'I need details on the available projects'
- 'Quels sont les projets disponibles ?'
|
Evaluation
Metrics
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("ali170506/chab")
preds = model("Is it available?")
Training Details
Training Set Metrics
Training set |
Min |
Median |
Max |
Word count |
3 |
5.2222 |
8 |
Label |
Training Sample Count |
information_on_projects |
3 |
pricing_details |
3 |
location_details |
3 |
amenities_and_features |
3 |
check_availability |
3 |
schedule_a_visit |
3 |
reservation_process |
3 |
option_process |
3 |
payment_plan |
3 |
Training Hyperparameters
- batch_size: (4, 4)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch |
Step |
Training Loss |
Validation Loss |
0.0062 |
1 |
0.0311 |
- |
0.0617 |
10 |
0.0989 |
- |
0.1235 |
20 |
0.0036 |
- |
0.1852 |
30 |
0.0121 |
- |
0.2469 |
40 |
0.0209 |
- |
0.3086 |
50 |
0.001 |
- |
0.3704 |
60 |
0.0067 |
- |
0.4321 |
70 |
0.017 |
- |
0.4938 |
80 |
0.0037 |
- |
0.5556 |
90 |
0.012 |
- |
0.6173 |
100 |
0.0009 |
- |
0.6790 |
110 |
0.0044 |
- |
0.7407 |
120 |
0.0014 |
- |
0.8025 |
130 |
0.0006 |
- |
0.8642 |
140 |
0.0016 |
- |
0.9259 |
150 |
0.0024 |
- |
0.9877 |
160 |
0.0011 |
- |
1.0 |
162 |
- |
0.0164 |
1.0494 |
170 |
0.0019 |
- |
1.1111 |
180 |
0.0017 |
- |
1.1728 |
190 |
0.0004 |
- |
1.2346 |
200 |
0.0008 |
- |
1.2963 |
210 |
0.0012 |
- |
1.3580 |
220 |
0.0009 |
- |
1.4198 |
230 |
0.0006 |
- |
1.4815 |
240 |
0.001 |
- |
1.5432 |
250 |
0.0009 |
- |
1.6049 |
260 |
0.0015 |
- |
1.6667 |
270 |
0.0016 |
- |
1.7284 |
280 |
0.0009 |
- |
1.7901 |
290 |
0.0005 |
- |
1.8519 |
300 |
0.0009 |
- |
1.9136 |
310 |
0.0009 |
- |
1.9753 |
320 |
0.0008 |
- |
2.0 |
324 |
- |
0.0138 |
2.0370 |
330 |
0.0011 |
- |
2.0988 |
340 |
0.0016 |
- |
2.1605 |
350 |
0.0006 |
- |
2.2222 |
360 |
0.0012 |
- |
2.2840 |
370 |
0.0014 |
- |
2.3457 |
380 |
0.0009 |
- |
2.4074 |
390 |
0.0008 |
- |
2.4691 |
400 |
0.0003 |
- |
2.5309 |
410 |
0.0002 |
- |
2.5926 |
420 |
0.0007 |
- |
2.6543 |
430 |
0.001 |
- |
2.7160 |
440 |
0.0008 |
- |
2.7778 |
450 |
0.0008 |
- |
2.8395 |
460 |
0.0003 |
- |
2.9012 |
470 |
0.0004 |
- |
2.9630 |
480 |
0.0003 |
- |
3.0 |
486 |
- |
0.0129 |
3.0247 |
490 |
0.0013 |
- |
3.0864 |
500 |
0.0006 |
- |
3.1481 |
510 |
0.0008 |
- |
3.2099 |
520 |
0.0001 |
- |
3.2716 |
530 |
0.0007 |
- |
3.3333 |
540 |
0.0004 |
- |
3.3951 |
550 |
0.0004 |
- |
3.4568 |
560 |
0.0003 |
- |
3.5185 |
570 |
0.0003 |
- |
3.5802 |
580 |
0.0002 |
- |
3.6420 |
590 |
0.0002 |
- |
3.7037 |
600 |
0.0002 |
- |
3.7654 |
610 |
0.0007 |
- |
3.8272 |
620 |
0.0007 |
- |
3.8889 |
630 |
0.0007 |
- |
3.9506 |
640 |
0.0003 |
- |
4.0 |
648 |
- |
0.0129 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.37.0
- PyTorch: 2.4.1+cu121
- Datasets: 3.0.1
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}