YAML Metadata
Warning:
The pipeline tag "text2text-generation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other
PragmaticLM - T5 for Prompt Restructuring
π Overview
PragmaticLM is a fine-tuned T5 model designed to restructure and reframe user prompts for better understanding by downstream LLMs. The model enhances prompt clarity by leveraging contextual restructuring techniques.
π Model Details
- Base Model: T5-Base
- Training Data: [Indirect Requests] (https://huggingface.co/datasets/msamogh/indirect-requests)
- Task Type: Text-to-text transformation
- Library: Hugging Face Transformers
π Training Configuration
- Epochs: 10
- Batch Size: 8
- Learning Rate: Encoder:
1e-5, Decoder:3e-5 - Optimizer: AdamW
- Loss Function: Cross-entropy loss
- Hardware: GPU (T4)
β‘ Usage
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
tokenizer = AutoTokenizer.from_pretrained("aliMohammad16/pragmaticLM")
model = AutoModelForSeq2SeqLM.from_pretrained("aliMohammad16/pragmaticLM")
def restructure_prompt(input_prompt):
input_text = f"Restructure Prompt: {input_prompt}"
inputs = tokenizer(input_text, return_tensors="pt", padding=True)
output = model.generate(
inputs.input_ids,
max_length=64,
num_beams=4,
early_stopping=True
)
return tokenizer.decode(output[0], skip_special_tokens=True)
# Example Usage
test_prompt = "I am not feeeling well. I need to consult a doctor nearby."
print(restructure_prompt(test_prompt))
β³ Improvements
- Work in progress: This is a work in progress. I am actively working on this model.
- Update: Next I am implementing a multimodular pipeline, integrating TinyLlama 1.1B and Llama Index RAG with
prompt-restructuringmodel, to improve output generation.
- Downloads last month
- -
Model tree for aliMohammad16/pragmaticLM
Base model
google-t5/t5-base