YAML Metadata Warning: The pipeline tag "text2text-generation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other

PragmaticLM - T5 for Prompt Restructuring

Model

πŸ“Œ Overview

PragmaticLM is a fine-tuned T5 model designed to restructure and reframe user prompts for better understanding by downstream LLMs. The model enhances prompt clarity by leveraging contextual restructuring techniques.

πŸš€ Model Details

πŸ“Š Training Configuration

  • Epochs: 10
  • Batch Size: 8
  • Learning Rate: Encoder: 1e-5, Decoder: 3e-5
  • Optimizer: AdamW
  • Loss Function: Cross-entropy loss
  • Hardware: GPU (T4)

⚑ Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch

tokenizer = AutoTokenizer.from_pretrained("aliMohammad16/pragmaticLM")
model = AutoModelForSeq2SeqLM.from_pretrained("aliMohammad16/pragmaticLM")

def restructure_prompt(input_prompt):
    input_text = f"Restructure Prompt: {input_prompt}"
    inputs = tokenizer(input_text, return_tensors="pt", padding=True)
    
    output = model.generate(
        inputs.input_ids,
        max_length=64,
        num_beams=4,
        early_stopping=True
    )
    
    return tokenizer.decode(output[0], skip_special_tokens=True)

# Example Usage
test_prompt = "I am not feeeling well. I need to consult a doctor nearby."
print(restructure_prompt(test_prompt))

⏳ Improvements

  • Work in progress: This is a work in progress. I am actively working on this model.
  • Update: Next I am implementing a multimodular pipeline, integrating TinyLlama 1.1B and Llama Index RAG with prompt-restructuring model, to improve output generation.
Downloads last month
-
Safetensors
Model size
0.2B params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for aliMohammad16/pragmaticLM

Base model

google-t5/t5-base
Finetuned
(688)
this model

Dataset used to train aliMohammad16/pragmaticLM