File size: 10,234 Bytes
e043ce8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
680047d
 
 
e043ce8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-xlsr-coraa-exp-12
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xlsr-coraa-exp-12

This model is a fine-tuned version of [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5650
- Wer: 0.3527
- Cer: 0.1823

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 37.6216       | 1.0   | 14   | 23.2071         | 1.0    | 0.9619 |
| 37.6216       | 2.0   | 28   | 6.9366          | 1.0    | 0.9619 |
| 37.6216       | 3.0   | 42   | 4.4250          | 1.0    | 0.9619 |
| 37.6216       | 4.0   | 56   | 3.9154          | 1.0    | 0.9619 |
| 37.6216       | 5.0   | 70   | 3.6849          | 1.0    | 0.9619 |
| 37.6216       | 6.0   | 84   | 3.5283          | 1.0    | 0.9619 |
| 37.6216       | 7.0   | 98   | 3.3716          | 1.0    | 0.9619 |
| 8.823         | 8.0   | 112  | 3.2657          | 1.0    | 0.9619 |
| 8.823         | 9.0   | 126  | 3.1796          | 1.0    | 0.9619 |
| 8.823         | 10.0  | 140  | 3.1568          | 1.0    | 0.9619 |
| 8.823         | 11.0  | 154  | 3.1071          | 1.0    | 0.9619 |
| 8.823         | 12.0  | 168  | 3.0891          | 1.0    | 0.9619 |
| 8.823         | 13.0  | 182  | 3.0588          | 1.0    | 0.9619 |
| 8.823         | 14.0  | 196  | 3.0422          | 1.0    | 0.9619 |
| 3.0574        | 15.0  | 210  | 3.0388          | 1.0    | 0.9619 |
| 3.0574        | 16.0  | 224  | 3.0324          | 1.0    | 0.9619 |
| 3.0574        | 17.0  | 238  | 3.0253          | 1.0    | 0.9619 |
| 3.0574        | 18.0  | 252  | 3.0100          | 1.0    | 0.9619 |
| 3.0574        | 19.0  | 266  | 3.0079          | 1.0    | 0.9619 |
| 3.0574        | 20.0  | 280  | 3.0150          | 1.0    | 0.9619 |
| 3.0574        | 21.0  | 294  | 3.0033          | 1.0    | 0.9619 |
| 2.95          | 22.0  | 308  | 2.9999          | 1.0    | 0.9619 |
| 2.95          | 23.0  | 322  | 2.9940          | 1.0    | 0.9619 |
| 2.95          | 24.0  | 336  | 2.9982          | 1.0    | 0.9619 |
| 2.95          | 25.0  | 350  | 3.0212          | 1.0    | 0.9619 |
| 2.95          | 26.0  | 364  | 2.9951          | 1.0    | 0.9619 |
| 2.95          | 27.0  | 378  | 2.9893          | 1.0    | 0.9619 |
| 2.95          | 28.0  | 392  | 2.9907          | 1.0    | 0.9619 |
| 2.9233        | 29.0  | 406  | 2.9889          | 1.0    | 0.9619 |
| 2.9233        | 30.0  | 420  | 2.9813          | 1.0    | 0.9619 |
| 2.9233        | 31.0  | 434  | 2.9795          | 1.0    | 0.9619 |
| 2.9233        | 32.0  | 448  | 2.9633          | 1.0    | 0.9619 |
| 2.9233        | 33.0  | 462  | 2.9653          | 1.0    | 0.9585 |
| 2.9233        | 34.0  | 476  | 2.9050          | 1.0    | 0.9619 |
| 2.9233        | 35.0  | 490  | 2.8806          | 1.0    | 0.9619 |
| 2.8852        | 36.0  | 504  | 2.8230          | 1.0    | 0.9619 |
| 2.8852        | 37.0  | 518  | 2.7805          | 1.0    | 0.9619 |
| 2.8852        | 38.0  | 532  | 2.7044          | 1.0    | 0.9572 |
| 2.8852        | 39.0  | 546  | 2.6561          | 1.0    | 0.9559 |
| 2.8852        | 40.0  | 560  | 2.5475          | 1.0    | 0.9254 |
| 2.8852        | 41.0  | 574  | 2.3336          | 1.0    | 0.7458 |
| 2.8852        | 42.0  | 588  | 2.0696          | 1.0    | 0.5468 |
| 2.5339        | 43.0  | 602  | 1.7760          | 1.0    | 0.4971 |
| 2.5339        | 44.0  | 616  | 1.5433          | 1.0    | 0.4546 |
| 2.5339        | 45.0  | 630  | 1.3529          | 1.0    | 0.4067 |
| 2.5339        | 46.0  | 644  | 1.2149          | 0.9998 | 0.3834 |
| 2.5339        | 47.0  | 658  | 1.0925          | 0.9943 | 0.3578 |
| 2.5339        | 48.0  | 672  | 1.0236          | 0.8954 | 0.3129 |
| 2.5339        | 49.0  | 686  | 0.9525          | 0.7062 | 0.2623 |
| 1.3395        | 50.0  | 700  | 0.8922          | 0.5063 | 0.2201 |
| 1.3395        | 51.0  | 714  | 0.8068          | 0.4774 | 0.2115 |
| 1.3395        | 52.0  | 728  | 0.7932          | 0.4553 | 0.2076 |
| 1.3395        | 53.0  | 742  | 0.7726          | 0.4453 | 0.2066 |
| 1.3395        | 54.0  | 756  | 0.7551          | 0.4340 | 0.2027 |
| 1.3395        | 55.0  | 770  | 0.7420          | 0.4305 | 0.2039 |
| 1.3395        | 56.0  | 784  | 0.7146          | 0.4212 | 0.2008 |
| 1.3395        | 57.0  | 798  | 0.6768          | 0.4096 | 0.1957 |
| 0.7419        | 58.0  | 812  | 0.6767          | 0.4080 | 0.1962 |
| 0.7419        | 59.0  | 826  | 0.6709          | 0.4069 | 0.1971 |
| 0.7419        | 60.0  | 840  | 0.6791          | 0.4025 | 0.1967 |
| 0.7419        | 61.0  | 854  | 0.6560          | 0.4029 | 0.1938 |
| 0.7419        | 62.0  | 868  | 0.6474          | 0.3976 | 0.1939 |
| 0.7419        | 63.0  | 882  | 0.6584          | 0.3982 | 0.1941 |
| 0.7419        | 64.0  | 896  | 0.6619          | 0.3960 | 0.1938 |
| 0.5254        | 65.0  | 910  | 0.6514          | 0.3923 | 0.1936 |
| 0.5254        | 66.0  | 924  | 0.6363          | 0.3874 | 0.1915 |
| 0.5254        | 67.0  | 938  | 0.6173          | 0.3797 | 0.1900 |
| 0.5254        | 68.0  | 952  | 0.6284          | 0.3887 | 0.1918 |
| 0.5254        | 69.0  | 966  | 0.6153          | 0.3767 | 0.1897 |
| 0.5254        | 70.0  | 980  | 0.6084          | 0.3736 | 0.1879 |
| 0.5254        | 71.0  | 994  | 0.6196          | 0.3773 | 0.1900 |
| 0.4219        | 72.0  | 1008 | 0.6075          | 0.3730 | 0.1899 |
| 0.4219        | 73.0  | 1022 | 0.6017          | 0.3712 | 0.1884 |
| 0.4219        | 74.0  | 1036 | 0.5947          | 0.3694 | 0.1872 |
| 0.4219        | 75.0  | 1050 | 0.5975          | 0.3696 | 0.1889 |
| 0.4219        | 76.0  | 1064 | 0.6020          | 0.3728 | 0.1887 |
| 0.4219        | 77.0  | 1078 | 0.5994          | 0.3704 | 0.1892 |
| 0.4219        | 78.0  | 1092 | 0.5822          | 0.3716 | 0.1877 |
| 0.385         | 79.0  | 1106 | 0.6073          | 0.3742 | 0.1893 |
| 0.385         | 80.0  | 1120 | 0.6029          | 0.3728 | 0.1874 |
| 0.385         | 81.0  | 1134 | 0.5961          | 0.3700 | 0.1868 |
| 0.385         | 82.0  | 1148 | 0.6032          | 0.3702 | 0.1870 |
| 0.385         | 83.0  | 1162 | 0.6115          | 0.3722 | 0.1889 |
| 0.385         | 84.0  | 1176 | 0.6018          | 0.3690 | 0.1883 |
| 0.385         | 85.0  | 1190 | 0.5824          | 0.3665 | 0.1855 |
| 0.3463        | 86.0  | 1204 | 0.5985          | 0.3669 | 0.1866 |
| 0.3463        | 87.0  | 1218 | 0.5833          | 0.3669 | 0.1861 |
| 0.3463        | 88.0  | 1232 | 0.5775          | 0.3637 | 0.1862 |
| 0.3463        | 89.0  | 1246 | 0.5747          | 0.3606 | 0.1850 |
| 0.3463        | 90.0  | 1260 | 0.5784          | 0.3639 | 0.1851 |
| 0.3463        | 91.0  | 1274 | 0.5841          | 0.3604 | 0.1858 |
| 0.3463        | 92.0  | 1288 | 0.5762          | 0.3655 | 0.1850 |
| 0.3237        | 93.0  | 1302 | 0.5836          | 0.3598 | 0.1854 |
| 0.3237        | 94.0  | 1316 | 0.5761          | 0.3588 | 0.1841 |
| 0.3237        | 95.0  | 1330 | 0.5822          | 0.3596 | 0.1848 |
| 0.3237        | 96.0  | 1344 | 0.5886          | 0.3592 | 0.1850 |
| 0.3237        | 97.0  | 1358 | 0.5696          | 0.3574 | 0.1830 |
| 0.3237        | 98.0  | 1372 | 0.5794          | 0.3588 | 0.1836 |
| 0.3237        | 99.0  | 1386 | 0.5768          | 0.3570 | 0.1837 |
| 0.2799        | 100.0 | 1400 | 0.5837          | 0.3578 | 0.1844 |
| 0.2799        | 101.0 | 1414 | 0.5697          | 0.3525 | 0.1826 |
| 0.2799        | 102.0 | 1428 | 0.5796          | 0.3566 | 0.1834 |
| 0.2799        | 103.0 | 1442 | 0.5712          | 0.3549 | 0.1825 |
| 0.2799        | 104.0 | 1456 | 0.5796          | 0.3555 | 0.1829 |
| 0.2799        | 105.0 | 1470 | 0.5759          | 0.3553 | 0.1835 |
| 0.2799        | 106.0 | 1484 | 0.5750          | 0.3562 | 0.1831 |
| 0.2799        | 107.0 | 1498 | 0.5650          | 0.3527 | 0.1823 |
| 0.2674        | 108.0 | 1512 | 0.5677          | 0.3499 | 0.1823 |
| 0.2674        | 109.0 | 1526 | 0.5699          | 0.3541 | 0.1826 |
| 0.2674        | 110.0 | 1540 | 0.5779          | 0.3555 | 0.1837 |
| 0.2674        | 111.0 | 1554 | 0.5792          | 0.3551 | 0.1834 |
| 0.2674        | 112.0 | 1568 | 0.5697          | 0.3574 | 0.1829 |
| 0.2674        | 113.0 | 1582 | 0.5852          | 0.3590 | 0.1839 |
| 0.2674        | 114.0 | 1596 | 0.5735          | 0.3537 | 0.1829 |
| 0.2611        | 115.0 | 1610 | 0.5774          | 0.3545 | 0.1832 |
| 0.2611        | 116.0 | 1624 | 0.5836          | 0.3555 | 0.1841 |
| 0.2611        | 117.0 | 1638 | 0.5750          | 0.3517 | 0.1832 |
| 0.2611        | 118.0 | 1652 | 0.5772          | 0.3521 | 0.1825 |
| 0.2611        | 119.0 | 1666 | 0.5793          | 0.3521 | 0.1831 |
| 0.2611        | 120.0 | 1680 | 0.5756          | 0.3517 | 0.1828 |
| 0.2611        | 121.0 | 1694 | 0.5794          | 0.3517 | 0.1830 |
| 0.2476        | 122.0 | 1708 | 0.5719          | 0.3521 | 0.1827 |
| 0.2476        | 123.0 | 1722 | 0.5804          | 0.3543 | 0.1830 |
| 0.2476        | 124.0 | 1736 | 0.5729          | 0.3539 | 0.1825 |
| 0.2476        | 125.0 | 1750 | 0.5874          | 0.3519 | 0.1832 |
| 0.2476        | 126.0 | 1764 | 0.5777          | 0.3533 | 0.1826 |
| 0.2476        | 127.0 | 1778 | 0.5762          | 0.3531 | 0.1822 |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.13.3