wav2vec2-large-xlsr-coraa-exp-13
This model is a fine-tuned version of Edresson/wav2vec2-large-xlsr-coraa-portuguese on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5561
- Wer: 0.3456
- Cer: 0.1803
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
38.268 | 1.0 | 14 | 32.0584 | 1.0 | 0.9430 |
38.268 | 2.0 | 28 | 10.3763 | 1.0 | 0.9619 |
38.268 | 3.0 | 42 | 4.8976 | 1.0 | 0.9619 |
38.268 | 4.0 | 56 | 4.0406 | 1.0 | 0.9619 |
38.268 | 5.0 | 70 | 3.7470 | 1.0 | 0.9619 |
38.268 | 6.0 | 84 | 3.5903 | 1.0 | 0.9619 |
38.268 | 7.0 | 98 | 3.4750 | 1.0 | 0.9619 |
10.1654 | 8.0 | 112 | 3.3406 | 1.0 | 0.9619 |
10.1654 | 9.0 | 126 | 3.2267 | 1.0 | 0.9619 |
10.1654 | 10.0 | 140 | 3.1887 | 1.0 | 0.9619 |
10.1654 | 11.0 | 154 | 3.1301 | 1.0 | 0.9619 |
10.1654 | 12.0 | 168 | 3.1046 | 1.0 | 0.9619 |
10.1654 | 13.0 | 182 | 3.0909 | 1.0 | 0.9619 |
10.1654 | 14.0 | 196 | 3.0603 | 1.0 | 0.9619 |
3.0823 | 15.0 | 210 | 3.0584 | 1.0 | 0.9619 |
3.0823 | 16.0 | 224 | 3.0485 | 1.0 | 0.9619 |
3.0823 | 17.0 | 238 | 3.0464 | 1.0 | 0.9619 |
3.0823 | 18.0 | 252 | 3.0242 | 1.0 | 0.9619 |
3.0823 | 19.0 | 266 | 3.0237 | 1.0 | 0.9619 |
3.0823 | 20.0 | 280 | 3.0304 | 1.0 | 0.9619 |
3.0823 | 21.0 | 294 | 3.0119 | 1.0 | 0.9619 |
2.9562 | 22.0 | 308 | 3.0148 | 1.0 | 0.9619 |
2.9562 | 23.0 | 322 | 3.0061 | 1.0 | 0.9619 |
2.9562 | 24.0 | 336 | 3.0042 | 1.0 | 0.9619 |
2.9562 | 25.0 | 350 | 3.0033 | 1.0 | 0.9619 |
2.9562 | 26.0 | 364 | 3.0029 | 1.0 | 0.9619 |
2.9562 | 27.0 | 378 | 3.0082 | 1.0 | 0.9619 |
2.9562 | 28.0 | 392 | 2.9956 | 1.0 | 0.9619 |
2.9262 | 29.0 | 406 | 2.9948 | 1.0 | 0.9619 |
2.9262 | 30.0 | 420 | 2.9982 | 1.0 | 0.9619 |
2.9262 | 31.0 | 434 | 2.9962 | 1.0 | 0.9619 |
2.9262 | 32.0 | 448 | 2.9931 | 1.0 | 0.9619 |
2.9262 | 33.0 | 462 | 2.9809 | 1.0 | 0.9619 |
2.9262 | 34.0 | 476 | 2.9804 | 1.0 | 0.9619 |
2.9262 | 35.0 | 490 | 2.9742 | 1.0 | 0.9619 |
2.9125 | 36.0 | 504 | 2.9522 | 1.0 | 0.9619 |
2.9125 | 37.0 | 518 | 2.9015 | 1.0 | 0.9619 |
2.9125 | 38.0 | 532 | 2.8522 | 1.0 | 0.9619 |
2.9125 | 39.0 | 546 | 2.8285 | 1.0 | 0.9619 |
2.9125 | 40.0 | 560 | 2.7294 | 1.0 | 0.9615 |
2.9125 | 41.0 | 574 | 2.6491 | 1.0 | 0.9605 |
2.9125 | 42.0 | 588 | 2.4883 | 1.0 | 0.8950 |
2.7205 | 43.0 | 602 | 2.3631 | 1.0 | 0.8365 |
2.7205 | 44.0 | 616 | 2.0546 | 1.0 | 0.6074 |
2.7205 | 45.0 | 630 | 1.7867 | 1.0 | 0.5148 |
2.7205 | 46.0 | 644 | 1.5453 | 1.0 | 0.4532 |
2.7205 | 47.0 | 658 | 1.3554 | 0.9990 | 0.4064 |
2.7205 | 48.0 | 672 | 1.2016 | 0.9829 | 0.3670 |
2.7205 | 49.0 | 686 | 1.0777 | 0.8805 | 0.3167 |
1.6469 | 50.0 | 700 | 0.9790 | 0.7030 | 0.2594 |
1.6469 | 51.0 | 714 | 0.8962 | 0.5270 | 0.2224 |
1.6469 | 52.0 | 728 | 0.8429 | 0.4974 | 0.2176 |
1.6469 | 53.0 | 742 | 0.8159 | 0.4659 | 0.2089 |
1.6469 | 54.0 | 756 | 0.7980 | 0.4512 | 0.2066 |
1.6469 | 55.0 | 770 | 0.7541 | 0.4441 | 0.2044 |
1.6469 | 56.0 | 784 | 0.7299 | 0.4273 | 0.2015 |
1.6469 | 57.0 | 798 | 0.7078 | 0.4092 | 0.1964 |
0.7997 | 58.0 | 812 | 0.7079 | 0.4110 | 0.1973 |
0.7997 | 59.0 | 826 | 0.6861 | 0.4137 | 0.1983 |
0.7997 | 60.0 | 840 | 0.7035 | 0.4011 | 0.1975 |
0.7997 | 61.0 | 854 | 0.6676 | 0.4000 | 0.1942 |
0.7997 | 62.0 | 868 | 0.6562 | 0.3980 | 0.1937 |
0.7997 | 63.0 | 882 | 0.6580 | 0.3850 | 0.1911 |
0.7997 | 64.0 | 896 | 0.6643 | 0.3911 | 0.1925 |
0.5379 | 65.0 | 910 | 0.6532 | 0.3929 | 0.1928 |
0.5379 | 66.0 | 924 | 0.6483 | 0.3866 | 0.1906 |
0.5379 | 67.0 | 938 | 0.6267 | 0.3757 | 0.1870 |
0.5379 | 68.0 | 952 | 0.6296 | 0.3793 | 0.1880 |
0.5379 | 69.0 | 966 | 0.6415 | 0.3785 | 0.1902 |
0.5379 | 70.0 | 980 | 0.6227 | 0.3746 | 0.1885 |
0.5379 | 71.0 | 994 | 0.6213 | 0.3738 | 0.1878 |
0.4372 | 72.0 | 1008 | 0.6110 | 0.3726 | 0.1872 |
0.4372 | 73.0 | 1022 | 0.6019 | 0.3696 | 0.1862 |
0.4372 | 74.0 | 1036 | 0.6037 | 0.3722 | 0.1867 |
0.4372 | 75.0 | 1050 | 0.5994 | 0.3657 | 0.1881 |
0.4372 | 76.0 | 1064 | 0.6083 | 0.3704 | 0.1881 |
0.4372 | 77.0 | 1078 | 0.5838 | 0.3696 | 0.1865 |
0.4372 | 78.0 | 1092 | 0.5795 | 0.3718 | 0.1855 |
0.3912 | 79.0 | 1106 | 0.6201 | 0.3714 | 0.1877 |
0.3912 | 80.0 | 1120 | 0.5915 | 0.3661 | 0.1854 |
0.3912 | 81.0 | 1134 | 0.5894 | 0.3651 | 0.1843 |
0.3912 | 82.0 | 1148 | 0.5994 | 0.3681 | 0.1859 |
0.3912 | 83.0 | 1162 | 0.6001 | 0.3655 | 0.1864 |
0.3912 | 84.0 | 1176 | 0.6008 | 0.3653 | 0.1865 |
0.3912 | 85.0 | 1190 | 0.5770 | 0.3602 | 0.1832 |
0.3485 | 86.0 | 1204 | 0.5905 | 0.3566 | 0.1836 |
0.3485 | 87.0 | 1218 | 0.5810 | 0.3580 | 0.1828 |
0.3485 | 88.0 | 1232 | 0.5765 | 0.3584 | 0.1830 |
0.3485 | 89.0 | 1246 | 0.5902 | 0.3641 | 0.1845 |
0.3485 | 90.0 | 1260 | 0.5812 | 0.3614 | 0.1831 |
0.3485 | 91.0 | 1274 | 0.5966 | 0.3586 | 0.1844 |
0.3485 | 92.0 | 1288 | 0.5686 | 0.3557 | 0.1822 |
0.3234 | 93.0 | 1302 | 0.5839 | 0.3553 | 0.1828 |
0.3234 | 94.0 | 1316 | 0.5765 | 0.3553 | 0.1820 |
0.3234 | 95.0 | 1330 | 0.5780 | 0.3566 | 0.1820 |
0.3234 | 96.0 | 1344 | 0.5862 | 0.3596 | 0.1834 |
0.3234 | 97.0 | 1358 | 0.5702 | 0.3555 | 0.1821 |
0.3234 | 98.0 | 1372 | 0.5787 | 0.3547 | 0.1821 |
0.3234 | 99.0 | 1386 | 0.5767 | 0.3531 | 0.1824 |
0.2803 | 100.0 | 1400 | 0.5778 | 0.3570 | 0.1818 |
0.2803 | 101.0 | 1414 | 0.5759 | 0.3543 | 0.1817 |
0.2803 | 102.0 | 1428 | 0.5838 | 0.3572 | 0.1824 |
0.2803 | 103.0 | 1442 | 0.5696 | 0.3541 | 0.1815 |
0.2803 | 104.0 | 1456 | 0.5724 | 0.3541 | 0.1820 |
0.2803 | 105.0 | 1470 | 0.5698 | 0.3543 | 0.1820 |
0.2803 | 106.0 | 1484 | 0.5727 | 0.3523 | 0.1816 |
0.2803 | 107.0 | 1498 | 0.5609 | 0.3511 | 0.1809 |
0.2718 | 108.0 | 1512 | 0.5655 | 0.3497 | 0.1807 |
0.2718 | 109.0 | 1526 | 0.5761 | 0.3535 | 0.1816 |
0.2718 | 110.0 | 1540 | 0.5753 | 0.3523 | 0.1815 |
0.2718 | 111.0 | 1554 | 0.5703 | 0.3503 | 0.1805 |
0.2718 | 112.0 | 1568 | 0.5623 | 0.3470 | 0.1802 |
0.2718 | 113.0 | 1582 | 0.5723 | 0.3511 | 0.1813 |
0.2718 | 114.0 | 1596 | 0.5608 | 0.3486 | 0.1803 |
0.2614 | 115.0 | 1610 | 0.5613 | 0.3511 | 0.1809 |
0.2614 | 116.0 | 1624 | 0.5742 | 0.3533 | 0.1817 |
0.2614 | 117.0 | 1638 | 0.5715 | 0.3523 | 0.1817 |
0.2614 | 118.0 | 1652 | 0.5695 | 0.3533 | 0.1817 |
0.2614 | 119.0 | 1666 | 0.5713 | 0.3531 | 0.1825 |
0.2614 | 120.0 | 1680 | 0.5664 | 0.3533 | 0.1821 |
0.2614 | 121.0 | 1694 | 0.5716 | 0.3531 | 0.1822 |
0.2463 | 122.0 | 1708 | 0.5680 | 0.3476 | 0.1810 |
0.2463 | 123.0 | 1722 | 0.5760 | 0.3527 | 0.1817 |
0.2463 | 124.0 | 1736 | 0.5561 | 0.3456 | 0.1803 |
0.2463 | 125.0 | 1750 | 0.5698 | 0.3478 | 0.1812 |
0.2463 | 126.0 | 1764 | 0.5667 | 0.3482 | 0.1811 |
0.2463 | 127.0 | 1778 | 0.5677 | 0.3478 | 0.1813 |
0.2463 | 128.0 | 1792 | 0.5681 | 0.3446 | 0.1805 |
0.2477 | 129.0 | 1806 | 0.5666 | 0.3470 | 0.1809 |
0.2477 | 130.0 | 1820 | 0.5696 | 0.3458 | 0.1804 |
0.2477 | 131.0 | 1834 | 0.5704 | 0.3478 | 0.1810 |
0.2477 | 132.0 | 1848 | 0.5656 | 0.3470 | 0.1808 |
0.2477 | 133.0 | 1862 | 0.5697 | 0.3472 | 0.1807 |
0.2477 | 134.0 | 1876 | 0.5716 | 0.3472 | 0.1810 |
0.2477 | 135.0 | 1890 | 0.5742 | 0.3484 | 0.1810 |
0.221 | 136.0 | 1904 | 0.5671 | 0.3472 | 0.1807 |
0.221 | 137.0 | 1918 | 0.5670 | 0.3462 | 0.1810 |
0.221 | 138.0 | 1932 | 0.5675 | 0.3460 | 0.1810 |
0.221 | 139.0 | 1946 | 0.5704 | 0.3462 | 0.1810 |
0.221 | 140.0 | 1960 | 0.5675 | 0.3458 | 0.1808 |
0.221 | 141.0 | 1974 | 0.5618 | 0.3444 | 0.1800 |
0.221 | 142.0 | 1988 | 0.5633 | 0.3454 | 0.1800 |
0.2217 | 143.0 | 2002 | 0.5664 | 0.3456 | 0.1807 |
0.2217 | 144.0 | 2016 | 0.5682 | 0.3462 | 0.1810 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.13.3
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.