File size: 11,407 Bytes
3718a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9848525
 
 
3718a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-xlsr-coraa-exp-13
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xlsr-coraa-exp-13

This model is a fine-tuned version of [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5561
- Wer: 0.3456
- Cer: 0.1803

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 38.268        | 1.0   | 14   | 32.0584         | 1.0    | 0.9430 |
| 38.268        | 2.0   | 28   | 10.3763         | 1.0    | 0.9619 |
| 38.268        | 3.0   | 42   | 4.8976          | 1.0    | 0.9619 |
| 38.268        | 4.0   | 56   | 4.0406          | 1.0    | 0.9619 |
| 38.268        | 5.0   | 70   | 3.7470          | 1.0    | 0.9619 |
| 38.268        | 6.0   | 84   | 3.5903          | 1.0    | 0.9619 |
| 38.268        | 7.0   | 98   | 3.4750          | 1.0    | 0.9619 |
| 10.1654       | 8.0   | 112  | 3.3406          | 1.0    | 0.9619 |
| 10.1654       | 9.0   | 126  | 3.2267          | 1.0    | 0.9619 |
| 10.1654       | 10.0  | 140  | 3.1887          | 1.0    | 0.9619 |
| 10.1654       | 11.0  | 154  | 3.1301          | 1.0    | 0.9619 |
| 10.1654       | 12.0  | 168  | 3.1046          | 1.0    | 0.9619 |
| 10.1654       | 13.0  | 182  | 3.0909          | 1.0    | 0.9619 |
| 10.1654       | 14.0  | 196  | 3.0603          | 1.0    | 0.9619 |
| 3.0823        | 15.0  | 210  | 3.0584          | 1.0    | 0.9619 |
| 3.0823        | 16.0  | 224  | 3.0485          | 1.0    | 0.9619 |
| 3.0823        | 17.0  | 238  | 3.0464          | 1.0    | 0.9619 |
| 3.0823        | 18.0  | 252  | 3.0242          | 1.0    | 0.9619 |
| 3.0823        | 19.0  | 266  | 3.0237          | 1.0    | 0.9619 |
| 3.0823        | 20.0  | 280  | 3.0304          | 1.0    | 0.9619 |
| 3.0823        | 21.0  | 294  | 3.0119          | 1.0    | 0.9619 |
| 2.9562        | 22.0  | 308  | 3.0148          | 1.0    | 0.9619 |
| 2.9562        | 23.0  | 322  | 3.0061          | 1.0    | 0.9619 |
| 2.9562        | 24.0  | 336  | 3.0042          | 1.0    | 0.9619 |
| 2.9562        | 25.0  | 350  | 3.0033          | 1.0    | 0.9619 |
| 2.9562        | 26.0  | 364  | 3.0029          | 1.0    | 0.9619 |
| 2.9562        | 27.0  | 378  | 3.0082          | 1.0    | 0.9619 |
| 2.9562        | 28.0  | 392  | 2.9956          | 1.0    | 0.9619 |
| 2.9262        | 29.0  | 406  | 2.9948          | 1.0    | 0.9619 |
| 2.9262        | 30.0  | 420  | 2.9982          | 1.0    | 0.9619 |
| 2.9262        | 31.0  | 434  | 2.9962          | 1.0    | 0.9619 |
| 2.9262        | 32.0  | 448  | 2.9931          | 1.0    | 0.9619 |
| 2.9262        | 33.0  | 462  | 2.9809          | 1.0    | 0.9619 |
| 2.9262        | 34.0  | 476  | 2.9804          | 1.0    | 0.9619 |
| 2.9262        | 35.0  | 490  | 2.9742          | 1.0    | 0.9619 |
| 2.9125        | 36.0  | 504  | 2.9522          | 1.0    | 0.9619 |
| 2.9125        | 37.0  | 518  | 2.9015          | 1.0    | 0.9619 |
| 2.9125        | 38.0  | 532  | 2.8522          | 1.0    | 0.9619 |
| 2.9125        | 39.0  | 546  | 2.8285          | 1.0    | 0.9619 |
| 2.9125        | 40.0  | 560  | 2.7294          | 1.0    | 0.9615 |
| 2.9125        | 41.0  | 574  | 2.6491          | 1.0    | 0.9605 |
| 2.9125        | 42.0  | 588  | 2.4883          | 1.0    | 0.8950 |
| 2.7205        | 43.0  | 602  | 2.3631          | 1.0    | 0.8365 |
| 2.7205        | 44.0  | 616  | 2.0546          | 1.0    | 0.6074 |
| 2.7205        | 45.0  | 630  | 1.7867          | 1.0    | 0.5148 |
| 2.7205        | 46.0  | 644  | 1.5453          | 1.0    | 0.4532 |
| 2.7205        | 47.0  | 658  | 1.3554          | 0.9990 | 0.4064 |
| 2.7205        | 48.0  | 672  | 1.2016          | 0.9829 | 0.3670 |
| 2.7205        | 49.0  | 686  | 1.0777          | 0.8805 | 0.3167 |
| 1.6469        | 50.0  | 700  | 0.9790          | 0.7030 | 0.2594 |
| 1.6469        | 51.0  | 714  | 0.8962          | 0.5270 | 0.2224 |
| 1.6469        | 52.0  | 728  | 0.8429          | 0.4974 | 0.2176 |
| 1.6469        | 53.0  | 742  | 0.8159          | 0.4659 | 0.2089 |
| 1.6469        | 54.0  | 756  | 0.7980          | 0.4512 | 0.2066 |
| 1.6469        | 55.0  | 770  | 0.7541          | 0.4441 | 0.2044 |
| 1.6469        | 56.0  | 784  | 0.7299          | 0.4273 | 0.2015 |
| 1.6469        | 57.0  | 798  | 0.7078          | 0.4092 | 0.1964 |
| 0.7997        | 58.0  | 812  | 0.7079          | 0.4110 | 0.1973 |
| 0.7997        | 59.0  | 826  | 0.6861          | 0.4137 | 0.1983 |
| 0.7997        | 60.0  | 840  | 0.7035          | 0.4011 | 0.1975 |
| 0.7997        | 61.0  | 854  | 0.6676          | 0.4000 | 0.1942 |
| 0.7997        | 62.0  | 868  | 0.6562          | 0.3980 | 0.1937 |
| 0.7997        | 63.0  | 882  | 0.6580          | 0.3850 | 0.1911 |
| 0.7997        | 64.0  | 896  | 0.6643          | 0.3911 | 0.1925 |
| 0.5379        | 65.0  | 910  | 0.6532          | 0.3929 | 0.1928 |
| 0.5379        | 66.0  | 924  | 0.6483          | 0.3866 | 0.1906 |
| 0.5379        | 67.0  | 938  | 0.6267          | 0.3757 | 0.1870 |
| 0.5379        | 68.0  | 952  | 0.6296          | 0.3793 | 0.1880 |
| 0.5379        | 69.0  | 966  | 0.6415          | 0.3785 | 0.1902 |
| 0.5379        | 70.0  | 980  | 0.6227          | 0.3746 | 0.1885 |
| 0.5379        | 71.0  | 994  | 0.6213          | 0.3738 | 0.1878 |
| 0.4372        | 72.0  | 1008 | 0.6110          | 0.3726 | 0.1872 |
| 0.4372        | 73.0  | 1022 | 0.6019          | 0.3696 | 0.1862 |
| 0.4372        | 74.0  | 1036 | 0.6037          | 0.3722 | 0.1867 |
| 0.4372        | 75.0  | 1050 | 0.5994          | 0.3657 | 0.1881 |
| 0.4372        | 76.0  | 1064 | 0.6083          | 0.3704 | 0.1881 |
| 0.4372        | 77.0  | 1078 | 0.5838          | 0.3696 | 0.1865 |
| 0.4372        | 78.0  | 1092 | 0.5795          | 0.3718 | 0.1855 |
| 0.3912        | 79.0  | 1106 | 0.6201          | 0.3714 | 0.1877 |
| 0.3912        | 80.0  | 1120 | 0.5915          | 0.3661 | 0.1854 |
| 0.3912        | 81.0  | 1134 | 0.5894          | 0.3651 | 0.1843 |
| 0.3912        | 82.0  | 1148 | 0.5994          | 0.3681 | 0.1859 |
| 0.3912        | 83.0  | 1162 | 0.6001          | 0.3655 | 0.1864 |
| 0.3912        | 84.0  | 1176 | 0.6008          | 0.3653 | 0.1865 |
| 0.3912        | 85.0  | 1190 | 0.5770          | 0.3602 | 0.1832 |
| 0.3485        | 86.0  | 1204 | 0.5905          | 0.3566 | 0.1836 |
| 0.3485        | 87.0  | 1218 | 0.5810          | 0.3580 | 0.1828 |
| 0.3485        | 88.0  | 1232 | 0.5765          | 0.3584 | 0.1830 |
| 0.3485        | 89.0  | 1246 | 0.5902          | 0.3641 | 0.1845 |
| 0.3485        | 90.0  | 1260 | 0.5812          | 0.3614 | 0.1831 |
| 0.3485        | 91.0  | 1274 | 0.5966          | 0.3586 | 0.1844 |
| 0.3485        | 92.0  | 1288 | 0.5686          | 0.3557 | 0.1822 |
| 0.3234        | 93.0  | 1302 | 0.5839          | 0.3553 | 0.1828 |
| 0.3234        | 94.0  | 1316 | 0.5765          | 0.3553 | 0.1820 |
| 0.3234        | 95.0  | 1330 | 0.5780          | 0.3566 | 0.1820 |
| 0.3234        | 96.0  | 1344 | 0.5862          | 0.3596 | 0.1834 |
| 0.3234        | 97.0  | 1358 | 0.5702          | 0.3555 | 0.1821 |
| 0.3234        | 98.0  | 1372 | 0.5787          | 0.3547 | 0.1821 |
| 0.3234        | 99.0  | 1386 | 0.5767          | 0.3531 | 0.1824 |
| 0.2803        | 100.0 | 1400 | 0.5778          | 0.3570 | 0.1818 |
| 0.2803        | 101.0 | 1414 | 0.5759          | 0.3543 | 0.1817 |
| 0.2803        | 102.0 | 1428 | 0.5838          | 0.3572 | 0.1824 |
| 0.2803        | 103.0 | 1442 | 0.5696          | 0.3541 | 0.1815 |
| 0.2803        | 104.0 | 1456 | 0.5724          | 0.3541 | 0.1820 |
| 0.2803        | 105.0 | 1470 | 0.5698          | 0.3543 | 0.1820 |
| 0.2803        | 106.0 | 1484 | 0.5727          | 0.3523 | 0.1816 |
| 0.2803        | 107.0 | 1498 | 0.5609          | 0.3511 | 0.1809 |
| 0.2718        | 108.0 | 1512 | 0.5655          | 0.3497 | 0.1807 |
| 0.2718        | 109.0 | 1526 | 0.5761          | 0.3535 | 0.1816 |
| 0.2718        | 110.0 | 1540 | 0.5753          | 0.3523 | 0.1815 |
| 0.2718        | 111.0 | 1554 | 0.5703          | 0.3503 | 0.1805 |
| 0.2718        | 112.0 | 1568 | 0.5623          | 0.3470 | 0.1802 |
| 0.2718        | 113.0 | 1582 | 0.5723          | 0.3511 | 0.1813 |
| 0.2718        | 114.0 | 1596 | 0.5608          | 0.3486 | 0.1803 |
| 0.2614        | 115.0 | 1610 | 0.5613          | 0.3511 | 0.1809 |
| 0.2614        | 116.0 | 1624 | 0.5742          | 0.3533 | 0.1817 |
| 0.2614        | 117.0 | 1638 | 0.5715          | 0.3523 | 0.1817 |
| 0.2614        | 118.0 | 1652 | 0.5695          | 0.3533 | 0.1817 |
| 0.2614        | 119.0 | 1666 | 0.5713          | 0.3531 | 0.1825 |
| 0.2614        | 120.0 | 1680 | 0.5664          | 0.3533 | 0.1821 |
| 0.2614        | 121.0 | 1694 | 0.5716          | 0.3531 | 0.1822 |
| 0.2463        | 122.0 | 1708 | 0.5680          | 0.3476 | 0.1810 |
| 0.2463        | 123.0 | 1722 | 0.5760          | 0.3527 | 0.1817 |
| 0.2463        | 124.0 | 1736 | 0.5561          | 0.3456 | 0.1803 |
| 0.2463        | 125.0 | 1750 | 0.5698          | 0.3478 | 0.1812 |
| 0.2463        | 126.0 | 1764 | 0.5667          | 0.3482 | 0.1811 |
| 0.2463        | 127.0 | 1778 | 0.5677          | 0.3478 | 0.1813 |
| 0.2463        | 128.0 | 1792 | 0.5681          | 0.3446 | 0.1805 |
| 0.2477        | 129.0 | 1806 | 0.5666          | 0.3470 | 0.1809 |
| 0.2477        | 130.0 | 1820 | 0.5696          | 0.3458 | 0.1804 |
| 0.2477        | 131.0 | 1834 | 0.5704          | 0.3478 | 0.1810 |
| 0.2477        | 132.0 | 1848 | 0.5656          | 0.3470 | 0.1808 |
| 0.2477        | 133.0 | 1862 | 0.5697          | 0.3472 | 0.1807 |
| 0.2477        | 134.0 | 1876 | 0.5716          | 0.3472 | 0.1810 |
| 0.2477        | 135.0 | 1890 | 0.5742          | 0.3484 | 0.1810 |
| 0.221         | 136.0 | 1904 | 0.5671          | 0.3472 | 0.1807 |
| 0.221         | 137.0 | 1918 | 0.5670          | 0.3462 | 0.1810 |
| 0.221         | 138.0 | 1932 | 0.5675          | 0.3460 | 0.1810 |
| 0.221         | 139.0 | 1946 | 0.5704          | 0.3462 | 0.1810 |
| 0.221         | 140.0 | 1960 | 0.5675          | 0.3458 | 0.1808 |
| 0.221         | 141.0 | 1974 | 0.5618          | 0.3444 | 0.1800 |
| 0.221         | 142.0 | 1988 | 0.5633          | 0.3454 | 0.1800 |
| 0.2217        | 143.0 | 2002 | 0.5664          | 0.3456 | 0.1807 |
| 0.2217        | 144.0 | 2016 | 0.5682          | 0.3462 | 0.1810 |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.13.3