wav2vec2-large-xlsr-coraa-exp-17

This model is a fine-tuned version of Edresson/wav2vec2-large-xlsr-coraa-portuguese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5486
  • Wer: 0.3511
  • Cer: 0.1797
  • Per: 0.3387

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Per
38.4208 1.0 14 41.8095 1.0057 1.2146 1.0057
38.4208 2.0 28 12.2873 1.0 0.9619 1.0
38.4208 3.0 42 4.8093 1.0 0.9619 1.0
38.4208 4.0 56 3.9738 1.0 0.9619 1.0
38.4208 5.0 70 3.6684 1.0 0.9619 1.0
38.4208 6.0 84 3.5007 1.0 0.9619 1.0
38.4208 7.0 98 3.3854 1.0 0.9619 1.0
11.8009 8.0 112 3.4506 1.0 0.9619 1.0
11.8009 9.0 126 3.1789 1.0 0.9619 1.0
11.8009 10.0 140 3.1274 1.0 0.9619 1.0
11.8009 11.0 154 3.1624 1.0 0.9619 1.0
11.8009 12.0 168 3.1066 1.0 0.9619 1.0
11.8009 13.0 182 3.0580 1.0 0.9619 1.0
11.8009 14.0 196 3.0477 1.0 0.9619 1.0
3.0395 15.0 210 3.0519 1.0 0.9619 1.0
3.0395 16.0 224 3.0364 1.0 0.9619 1.0
3.0395 17.0 238 3.0152 1.0 0.9619 1.0
3.0395 18.0 252 3.0167 1.0 0.9619 1.0
3.0395 19.0 266 3.0130 1.0 0.9619 1.0
3.0395 20.0 280 3.0103 1.0 0.9619 1.0
3.0395 21.0 294 2.9994 1.0 0.9619 1.0
2.9424 22.0 308 2.9999 1.0 0.9619 1.0
2.9424 23.0 322 3.0009 1.0 0.9619 1.0
2.9424 24.0 336 3.0024 1.0 0.9619 1.0
2.9424 25.0 350 3.0001 1.0 0.9619 1.0
2.9424 26.0 364 2.9891 1.0 0.9619 1.0
2.9424 27.0 378 2.9881 1.0 0.9619 1.0
2.9424 28.0 392 2.9703 1.0 0.9619 1.0
2.9154 29.0 406 2.9531 1.0 0.9619 1.0
2.9154 30.0 420 2.9208 1.0 0.9619 1.0
2.9154 31.0 434 2.8981 1.0 0.9619 1.0
2.9154 32.0 448 2.8321 1.0 0.9619 1.0
2.9154 33.0 462 2.7583 1.0 0.9619 1.0
2.9154 34.0 476 2.6405 1.0 0.9616 1.0
2.9154 35.0 490 2.5072 1.0 0.8832 1.0
2.7552 36.0 504 2.1547 1.0 0.6144 1.0
2.7552 37.0 518 1.7565 1.0 0.4996 1.0
2.7552 38.0 532 1.4602 1.0 0.4065 1.0
2.7552 39.0 546 1.2269 0.9896 0.3658 0.9892
2.7552 40.0 560 1.0906 0.8881 0.3205 0.8834
2.7552 41.0 574 0.9941 0.6772 0.2631 0.6603
2.7552 42.0 588 0.9133 0.5423 0.2322 0.5154
1.4599 43.0 602 0.8487 0.5142 0.2241 0.4882
1.4599 44.0 616 0.8211 0.4898 0.2207 0.4626
1.4599 45.0 630 0.7672 0.4803 0.2140 0.4518
1.4599 46.0 644 0.7432 0.4707 0.2092 0.4445
1.4599 47.0 658 0.7390 0.4492 0.2059 0.4262
1.4599 48.0 672 0.6994 0.4348 0.2011 0.4106
1.4599 49.0 686 0.6999 0.4230 0.1991 0.3998
0.7585 50.0 700 0.6738 0.4122 0.1959 0.3883
0.7585 51.0 714 0.6697 0.4094 0.1963 0.3858
0.7585 52.0 728 0.6707 0.4163 0.1996 0.3954
0.7585 53.0 742 0.6397 0.4031 0.1942 0.3832
0.7585 54.0 756 0.6293 0.4039 0.1939 0.3836
0.7585 55.0 770 0.6479 0.4027 0.1946 0.3852
0.7585 56.0 784 0.6307 0.3982 0.1934 0.3822
0.7585 57.0 798 0.6166 0.3844 0.1908 0.3673
0.5473 58.0 812 0.6099 0.3860 0.1906 0.3708
0.5473 59.0 826 0.6007 0.3868 0.1904 0.3730
0.5473 60.0 840 0.6191 0.3885 0.1928 0.3744
0.5473 61.0 854 0.6015 0.3885 0.1892 0.3732
0.5473 62.0 868 0.5965 0.3838 0.1902 0.3688
0.5473 63.0 882 0.5926 0.3826 0.1904 0.3667
0.5473 64.0 896 0.6188 0.3921 0.1921 0.3765
0.443 65.0 910 0.5835 0.3830 0.1892 0.3690
0.443 66.0 924 0.5914 0.3870 0.1903 0.3722
0.443 67.0 938 0.5828 0.3779 0.1876 0.3627
0.443 68.0 952 0.5745 0.3722 0.1857 0.3576
0.443 69.0 966 0.5786 0.3795 0.1882 0.3633
0.443 70.0 980 0.5869 0.3751 0.1884 0.3604
0.443 71.0 994 0.5923 0.3753 0.1888 0.3596
0.3564 72.0 1008 0.5707 0.3714 0.1859 0.3578
0.3564 73.0 1022 0.5733 0.3700 0.1857 0.3551
0.3564 74.0 1036 0.5731 0.3706 0.1854 0.3566
0.3564 75.0 1050 0.5644 0.3669 0.1847 0.3531
0.3564 76.0 1064 0.5661 0.3702 0.1852 0.3555
0.3564 77.0 1078 0.5705 0.3675 0.1847 0.3513
0.3564 78.0 1092 0.5631 0.3671 0.1835 0.3527
0.3456 79.0 1106 0.5675 0.3651 0.1831 0.3503
0.3456 80.0 1120 0.5697 0.3645 0.1846 0.3507
0.3456 81.0 1134 0.5644 0.3631 0.1841 0.3492
0.3456 82.0 1148 0.5657 0.3627 0.1843 0.3480
0.3456 83.0 1162 0.5831 0.3679 0.1876 0.3523
0.3456 84.0 1176 0.5824 0.3659 0.1862 0.3523
0.3456 85.0 1190 0.5567 0.3653 0.1833 0.3509
0.3073 86.0 1204 0.5755 0.3649 0.1852 0.3507
0.3073 87.0 1218 0.5590 0.3586 0.1829 0.3450
0.3073 88.0 1232 0.5663 0.3610 0.1835 0.3480
0.3073 89.0 1246 0.5734 0.3618 0.1851 0.3468
0.3073 90.0 1260 0.5657 0.3602 0.1830 0.3458
0.3073 91.0 1274 0.5651 0.3578 0.1828 0.3442
0.3073 92.0 1288 0.5608 0.3557 0.1820 0.3415
0.2836 93.0 1302 0.5505 0.3525 0.1807 0.3389
0.2836 94.0 1316 0.5495 0.3501 0.1798 0.3375
0.2836 95.0 1330 0.5693 0.3557 0.1816 0.3432
0.2836 96.0 1344 0.5638 0.3564 0.1822 0.3417
0.2836 97.0 1358 0.5486 0.3511 0.1797 0.3387
0.2836 98.0 1372 0.5618 0.3545 0.1810 0.3415
0.2836 99.0 1386 0.5637 0.3515 0.1800 0.3399
0.2502 100.0 1400 0.5658 0.3555 0.1810 0.3438
0.2502 101.0 1414 0.5527 0.3525 0.1795 0.3411
0.2502 102.0 1428 0.5701 0.3562 0.1807 0.3440
0.2502 103.0 1442 0.5543 0.3497 0.1794 0.3389
0.2502 104.0 1456 0.5660 0.3509 0.1803 0.3399
0.2502 105.0 1470 0.5543 0.3501 0.1795 0.3399
0.2502 106.0 1484 0.5742 0.3547 0.1817 0.3432
0.2502 107.0 1498 0.5527 0.3454 0.1789 0.3350
0.2368 108.0 1512 0.5577 0.3497 0.1789 0.3379
0.2368 109.0 1526 0.5539 0.3452 0.1789 0.3356
0.2368 110.0 1540 0.5700 0.3517 0.1802 0.3417
0.2368 111.0 1554 0.5627 0.3501 0.1794 0.3397
0.2368 112.0 1568 0.5622 0.3497 0.1797 0.3405
0.2368 113.0 1582 0.5708 0.3495 0.1801 0.3403
0.2368 114.0 1596 0.5733 0.3511 0.1805 0.3401
0.2288 115.0 1610 0.5615 0.3486 0.1795 0.3387
0.2288 116.0 1624 0.5741 0.3497 0.1809 0.3397
0.2288 117.0 1638 0.5610 0.3460 0.1796 0.3373

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.13.3
Downloads last month
6
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.