metadata
license: mit
language:
- fa
metrics:
- f1
- accuracy
base_model:
- HooshvareLab/bert-fa-base-uncased
pipeline_tag: text-classification
Fine-tuned BERT for Persian Comment Discrepancy Classification
This project fine-tunes a BERT model to classify Persian comments into two categories: complaints about Product discrepancy (True
) and not (False
). The model is trained on the Basalam Comments dataset.
🛠 Training Details
- Base Model:
HooshvareLab/bert-fa-base-uncased
- Fine-Tuning Dataset: Basalam comments
- NoteBook
- Evaluation Metrics:
- Accuracy: 95.89%
- F1 Score: 95.62%
📥 How to Use
You can load and use the fine-tuned model as follows:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
def classify_comment(text):
model_name = "alireza-2003/bert-fa-discrepancy-detection"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
prediction = torch.argmax(outputs.logits).item()
return "Discrepancy Complaint" if prediction == 1 else "Not a Complaint"
comment = "دو تا سفارش داده بودم یدونه ابی و یدونه قرمز ولی هردوتاش قرمز بود"
print(classify_comment(comment))
📝 Author: [Alireza]
📅 Last Updated: [2/16/2025]
🔗 Dataset: Kaggle Dataset