File size: 6,073 Bytes
8b78150 a53fb1c 8b78150 f7118f1 8b78150 f7118f1 8b78150 8583012 8b78150 fb52726 8b78150 5a4c5ff f7118f1 5a4c5ff 8b78150 f7118f1 5a4c5ff 8b78150 5a4c5ff 8b78150 24221ab f350193 24221ab 7ed6733 24221ab f7118f1 24221ab 7ed6733 24221ab 7ed6733 24221ab 7ed6733 24221ab 8b78150 c2a058d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
---
license: apache-2.0
language:
- en
base_model:
- Qwen/Qwen2.5-VL-7B-Instruct
library_name: transformers
---
<img alt="olmOCR Logo" src="https://cdn-uploads.huggingface.co/production/uploads/6734d6722769638944a5aa2e/DPsr3ZvRF9v-gdMa4EaHW.png" width="300px" style="margin-left:'auto' margin-right:'auto' display:'block'">
# olmOCR-2-7B-1025-FP8
Quantized to FP8 Version of [olmOCR-2-7B-1025](https://huggingface.co/allenai/olmOCR-2-7B-1025), using llmcompressor.
This is a release of the olmOCR model that's fine tuned from Qwen2.5-VL-7B-Instruct using the
[olmOCR-mix-1025](https://huggingface.co/datasets/allenai/olmOCR-mix-1025) dataset. It has been additionally
fine tuned using GRPO RL training to boost its performance at math equations, tables, and other tricky OCR cases.
Quick links:
- 📃 [Paper](https://olmocr.allenai.org/papers/olmocr.pdf)
- 🤗 [SFT Dataset](https://huggingface.co/datasets/allenai/olmOCR-mix-1025)
- 🤗 [RL Dataset](https://huggingface.co/datasets/allenai/olmOCR-synthmix-1025)
- 🛠️ [Code](https://github.com/allenai/olmocr)
- 🎮 [Demo](https://olmocr.allenai.org/)
The best way to use this model is via the [olmOCR toolkit](https://github.com/allenai/olmocr).
The toolkit comes with an efficient inference setup via VLLM that can handle millions of documents
at scale.
## olmOCR-Bench Scores
This model scores the following scores on [olmOCR-bench](https://huggingface.co/datasets/allenai/olmOCR-bench) when used with the
[olmOCR toolkit](https://github.com/allenai/olmocr) toolkit which automatically renders, rotates, and retries pages as needed.
<table>
<thead>
<tr>
<th align="left"><strong>Model</strong></th>
<th align="center">ArXiv</th>
<th align="center">Old Scans Math</th>
<th align="center">Tables</th>
<th align="center">Old Scans</th>
<th align="center">Headers and Footers</th>
<th align="center">Multi column</th>
<th align="center">Long tiny text</th>
<th align="center">Base</th>
<th align="center">Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">olmOCR pipeline v0.4.0 with olmOCR-2-7B-1025</td>
<td align="center">82.9</td>
<td align="center">82.1</td>
<td align="center">84.3</td>
<td align="center">48.3</td>
<td align="center">95.7</td>
<td align="center">84.3</td>
<td align="center">81.4</td>
<td align="center">99.7</td>
<td align="center">82.3 ± 1.1</td>
</tr>
<tr>
<td align="left">olmOCR pipeline v0.4.0 with olmOCR-2-7B-1025-FP8</td>
<td align="center">83.0</td>
<td align="center">82.3</td>
<td align="center">84.9</td>
<td align="center">47.7</td>
<td align="center">96.1</td>
<td align="center">83.7</td>
<td align="center">81.9</td>
<td align="center">99.7</td>
<td align="center">82.4 ± 1.1</td>
</tr>
</tbody>
</table>
## Usage
This model expects as input a single document image, rendered such that the longest dimension is 1288 pixels.
The prompt must then contain the additional metadata from the document, and the easiest way to generate this
is to use the methods provided by the [olmOCR toolkit](https://github.com/allenai/olmocr).
## Manual Prompting
If you want to prompt this model manually instead of using the [olmOCR toolkit](https://github.com/allenai/olmocr), please see the code below.
In normal usage, the olmOCR toolkit builds the prompt by rendering the PDF page, and
extracting relevant text blocks and image metadata. To duplicate that you will need to
```bash
pip install olmocr>=0.4.0
```
and then run the following sample code.
```python
import torch
import base64
import urllib.request
from io import BytesIO
from PIL import Image
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
from olmocr.data.renderpdf import render_pdf_to_base64png
from olmocr.prompts import build_no_anchoring_v4_yaml_prompt
# Initialize the model
model = Qwen2_5_VLForConditionalGeneration.from_pretrained("allenai/olmOCR-2-7B-1025", torch_dtype=torch.bfloat16).eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Grab a sample PDF
urllib.request.urlretrieve("https://olmocr.allenai.org/papers/olmocr.pdf", "./paper.pdf")
# Render page 1 to an image
image_base64 = render_pdf_to_base64png("./paper.pdf", 1, target_longest_image_dim=1288)
# Build the full prompt
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": build_no_anchoring_v4_yaml_prompt()},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
],
}
]
# Apply the chat template and processor
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
main_image = Image.open(BytesIO(base64.b64decode(image_base64)))
inputs = processor(
text=[text],
images=[main_image],
padding=True,
return_tensors="pt",
)
inputs = {key: value.to(device) for (key, value) in inputs.items()}
# Generate the output
output = model.generate(
**inputs,
temperature=0.1,
max_new_tokens=50,
num_return_sequences=1,
do_sample=True,
)
# Decode the output
prompt_length = inputs["input_ids"].shape[1]
new_tokens = output[:, prompt_length:]
text_output = processor.tokenizer.batch_decode(
new_tokens, skip_special_tokens=True
)
print(text_output)
# ['---\nprimary_language: en\nis_rotation_valid: True\nrotation_correction: 0\nis_table: False\nis_diagram: False\n---\nolmOCR: Unlocking Trillions of Tokens in PDFs with Vision Language Models\n\nJake Poz']
```
## License and use
This model is licensed under Apache 2.0. It is intended for research and educational use in accordance with Ai2's [Responsible Use Guidelines](https://allenai.org/responsible-use). |