Built with Axolotl

See axolotl config

axolotl version: 0.10.0.dev0

# === Model Configuration ===
base_model: Qwen/Qwen3-8B-Base
load_in_8bit: false
load_in_4bit: false

# === Training Setup ===
num_epochs: 2
micro_batch_size: 32
gradient_accumulation_steps: 1
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

# === Hyperparameter Configuration ===
optimizer: apollo_adamw_layerwise
# Apollo-mini configuration:
optim_args: "proj=random,rank=1,scale=128.0,scale_type=tensor,update_proj_gap=200"
# Regular Apollo configuration:
# optim_args: 
optim_target_modules: all_linear
learning_rate: 2e-5
lr_scheduler: rex
weight_decay: 0.01
warmup_ratio: 0

# === Data Configuration ===
datasets:
  - path: allura-org/inkmix-v3.0
    type: chat_template
    split: train
    field_messages: conversations
    message_field_role: from
    message_field_content: value

dataset_prepared_path: last_run_prepared
chat_template: chatml

# === Plugins ===
plugins:
  - axolotl.integrations.liger.LigerPlugin
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin

# === Hardware Optimization ===
gradient_checkpointing: unsloth
gradient_checkpointing_kwargs:
  use_reentrant: false
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
cut_cross_entropy: true

# === Wandb Tracking ===
wandb_project: qwen3-8b-inkmix-v3

# === Checkpointing ===
saves_per_epoch: 2
save_total_limit: 3

# === Advanced Settings ===
output_dir: /ephemeral/ckpts
bf16: auto
flash_attention: true
train_on_inputs: false
group_by_length: false
logging_steps: 1
trust_remote_code: true

ephemeral/ckpts

This model is a fine-tuned version of Qwen/Qwen3-8B-Base on the allura-org/inkmix-v3.0 dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use apollo_adamw_layerwise with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=proj=random,rank=1,scale=128.0,scale_type=tensor,update_proj_gap=200
  • lr_scheduler_type: cosine
  • num_epochs: 2.0

Training results

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
11
Safetensors
Model size
8.19B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for allura-forge/remnant-8b-ep2-ckpt

Base model

Qwen/Qwen3-8B-Base
Finetuned
(11)
this model