SentenceTransformer based on Model Distillation
In this experiment with knowledge distillation for embedding models, i retained 8 layers from the teacher model. This is an attempt to create a lighter, faster version.
- the top left graph shows how well your model's predictions match reality. Spearman correlation = 0.887
- the top right compares the correlation performance of this model vs the reference(mxbai-embed-large-v1) model - both bars around 0.8-0.9
- bottom left shows, this model processes about 45 samples/s and mxbai-embed-large-v1 processes about 30 samples/s.
- the bottom right shows a small accuracy drop for this model.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: mixedbread-ai/mxbai-embed-large-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'A black dog is drinking next to a brown and white dog that is looking at an orange ball in the lake, whilst a horse and rider passes behind.',
'Some men with jerseys are in a bar, watching a soccer match.',
'There are two people running around a track in lane three and the one wearing a blue shirt with a green thing over the eyes is just barely ahead of the guy wearing an orange shirt and sunglasses.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-dev
andsts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | sts-dev | sts-test |
---|---|---|
pearson_cosine | 0.8654 | 0.834 |
spearman_cosine | 0.8873 | 0.8724 |
Knowledge Distillation
- Evaluated with
MSEEvaluator
Metric | Value |
---|---|
negative_mse | -3.3795 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,195,425 training samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 4 tokens
- mean: 12.24 tokens
- max: 52 tokens
- size: 1024 elements
- Samples:
sentence label A person on a horse jumps over a broken down airplane.
[-0.012967385351657867, 0.3716000020503998, 0.252520889043808, 0.7052643299102783, -0.15118499100208282, ...]
Children smiling and waving at camera
[0.15414997935295105, 0.6666896939277649, -0.3150098919868469, 1.0102407932281494, 0.4113735556602478, ...]
A boy is jumping on skateboard in the middle of a red bridge.
[-0.2989530563354492, 0.8571284413337708, -0.48532426357269287, 0.8935043215751648, 0.28524795174598694, ...]
- Loss:
MSELoss
Evaluation Dataset
Unnamed Dataset
- Size: 10,000 evaluation samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 5 tokens
- mean: 13.23 tokens
- max: 57 tokens
- size: 1024 elements
- Samples:
sentence label Two women are embracing while holding to go packages.
[-0.35094621777534485, 0.4337681233882904, 0.22905530035495758, 0.9438946843147278, -1.0199058055877686, ...]
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
[-0.37593328952789307, 0.6690596342086792, -0.14921458065509796, 0.7559019923210144, -0.4093412756919861, ...]
A man selling donuts to a customer during a world exhibition event held in the city of Angeles
[0.21969863772392273, 0.5065202713012695, -0.25664886832237244, 0.2569092810153961, -0.05940837413072586, ...]
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 0.0001num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0001weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.4.0
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
- Downloads last month
- 28
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for aloobun/d-mxbai-L8-embed
Evaluation results
- Pearson Cosine on sts devself-reported0.865
- Spearman Cosine on sts devself-reported0.887
- Negative Mse on Unknownself-reported-3.380
- Pearson Cosine on sts testself-reported0.834
- Spearman Cosine on sts testself-reported0.872